High Performance Extrusion Coating EVA with Low Temperature Activation

Asia PLACE Symposium 24-25 October 2006 Shanghai, China

Learning Outcomes

- Introduce AT Plastics, div of Celanese
- Understand the effects of increasing %VA content in EVA resins
- Specifically compare the adhesion performance of 16% VA and 28% VA lamination films
- Troubleshoot typical difficulties encountered when extrusion coating EVA's with very high %VA content

AT Plastics, div of Celanese

- Celanese (www.celanese.com)
 - \$6 Billion diversified chemical company with many JVs in China
- AT Plastics' Facility in Alberta, CANADA
- Five High Pressure Autoclave Reactors
 - 145 kt annual capacity (EVA & LDPE)
- Focus on Specialty Polymers (LDPE & EVA)
 - LDPE with melt index up to 2200
 - EVA grades from 6% VA to 40% VA
- Excellent access to rail and ship ports
 - Ship to Asia from of Port of Vancouver
- Technical Service Centre
 - Located in state of the art Celanese facility in Kentucky, USA
- Represented in China by Cahota

Introduction

- What is Thermal Lamination Film ?
 - Step 1: LDPE or EVA is extruded onto substrate film (nylon, PET, BOPP)
 - Step 2: Film laminated to substrate stock
 - E.g. posters, school products, signs, book covers
- EVA is the established adhesive resin in the thermal lamination market
 - Versatile adhesion
 - Good processability
 - High gloss
 - Typically 15-18%vinyl acetate content

Polymer Chain Branching in EVA's

Effect of Increasing % of VA

Polymer properties:

- More short chain branching
- Less crystalline (More amorphous)
- Lower melt temperature
- More elastic as solid
- Greater flexibility

- Higher clarity and gloss
- Higher density
 - (VA unit weighs more than Ethylene unit)
- Increased polarity
 VA more polar than ethylene
- Increased toughness

Effect of Increasing % of VA

- → Application properties:
- Better adhesion to polar substrates
 - Aluminum Foil
- Increased tackiness (Coeff of Friction)
 - "Blocking" Pellets may stick together in a warm environment or under a heavy load
 - Wound film blocking concerns
 Need good tension control
 - Molten resin sticking to chill rolls

- Lower seal initiation temperature
 - Due to lower melt temperature and softening point
- Increased tendency to degrade or form gels during extrusion
 - Generates acetic acid and "vinegar" odour
 - Acetic acid promotes crosslinking and gels

Property comparison 16% & 28% VA

EVA Property		<u>16% VA</u>	<u>28% VA</u>
۰	Density	• 936 kg/m ³	• 948 kg/m ³
•	DSC Melt Temp	• 89 °C	• 70 °C
•	VICAT Soften Temp	• 62 °C	• 43 °C
•	Tensile strength	• 9 MPa	8 MPa
•	Elongation	• 700%	• 850%

Materials

Lamination Films:

- Thermal Lamination Film from two suppliers
 - EVA extrusion coated on primed PET and corona treated
- Two Extrusion Coating Resins •
 - Ateva[®] 2821A = 28% VA, $25MI \rightarrow$ call it **28**
 - Ateva[®] 1641 = 16% VA, 28MI \rightarrow call it **16**

Supplier "K" Structures: 0.25 mm PET / 0.5 mm EVA

۰	16K	dynes=42	CoF=1.2
0	28K	dynes=42	CoF=1.5

Supplier "L" Structures: 0.25 mm PET / 1 mm EVA

۲	16L	dynes=44	CoF=1.1
۲	28L	dynes=44	CoF=2.6

Materials

Substrates:

- Glossy paper substrates
- Offset Ink (solid print)

Soy-based ink (solid print)

 Prints were about 1 month old and sealed in foil pouch

Heat Seal Activation Comparison

Method:

- Heat seal film adhesive to adhesive
- 10 mm heat seal bars
- 138 kPa, 0.5 sec dwell
- Vary temperature from 71-127 °C
- Cut 2.5 cm strip and peel 180° on tensiometer @ 27 mm/min

Heat Seal Activation – 16% & 28% VA

Heat Seal Initiation Average Peel Strength

Supplier K Film: 0.25 mm PET/0.5 mm EVA

Heat Seal Activation – 16% & 28% VA

Heat Seal Initiation Average Peel Strength

Supplier L Film: 0.25 mm PET/1 mm EVA

Optical Property Comparison

Method:

- Heat seal film adhesive to adhesive
- Measure 45° gloss at surface of sealed structure
 - Although mainly influenced by PET gloss, adhesive resin has an effect
- Measure haze through sealed structure

Common lamination temperature for 28% EVA ~93°C and for 16% EVA ~115°C

Heat Seal Gloss Comparison

Optical Properties - Gloss

Heat Seal Haze Comparison

Optical Properties - Haze

Adhesion to Printed Substrates

Method:

- Desktop pouch laminator
 - Constant speed and pressure
 - Vary temperature from 71-127 °C
- Samples then peeled 1 hour after the lamination
- Cut 25 mm strip and peel on tensiometer 127 mm/min
 - 180° Peel Configuration
 - Max. load and average load between limits recorded
 - Peel strength reported in N/25 mm

0-5 = poor, 5-10 = fair, 10-15 = good, 15+ = excellent

Results on offset ink

Supplier K Film: 0.25 mm PET/0.5 mm EVA

Results on offset ink

Results on soy-based ink

Results on soy-based ink

Soy-ink Print

Processing Guidelines for 28% EVA's

- Extrude 28% EVA's at lower temperature
 - Melt Temp for 16% EVA's typically 225 °C
 - Melt Temp for 28% EVA's recommended at 215 °C
 - To minimize gels after long run times

Minimize Chill Roll Sticking

- <u>Heat of melt</u> Could reduce melt temperature. However, watch for lowered adhesion properties.
- <u>Temperature of chill roll</u> Reduce chill roll temperature. Watch for condensation.
- <u>Efficiency of chill roll</u> Should use purified water to prevent fouling. Check for fouled water system.

Processing Guidelines for 28% EVA's

Minimize Chill Roll Sticking

- <u>Degree of wrap around chill roll</u> More wrap will allow more cooling. However, if too much wrap around, chill roll water does not have time to recover, and gradually warms up. ("recovery time of chill roll")
- <u>Angle of pull-off</u> steeper angle may help
- <u>Chill roll release agent in resin</u> Not usually used because of adhesion. Acts like slip agent, and migrates to interface.
- <u>Overcoat width</u> Sometimes resin is overcoated beyond edge of substrate film. Reduce if possible.

Minimize Wound Roll Blocking

- Careful control of tension
- Can use lower tension because of higher surface tack

Concluding Remarks

- Difference in melt/softening temperature: 20 °C
- Difference in heat seal activation: 8 °C
 - MI difference may play a role
 - Adhesive thickness plays a role in bond strength
- Optical properties of 28% EVA superior to 16% EVA at 93 °C
 - Just above melt temperature of 16% EVA at 93°C
- Optical properties similar at 115 °C
 - Optical properties depend on quench rate
 - Fast solidification of melt allows less time for crystallization
 - Less crystallinity results in better gloss and lower haze

Concluding Remarks

Adhesion to offset ink

- Both 16% EVA and 28% EVA adhesion improves with increasing temperature
- 28%EVA superior to 16% EVA at each temperature
- Adhesion to soy ink
 - Increasing temperature improved adhesion for each film
 - 16% EVA adheres better at 115 °C
 - 28% EVA adheres better at 93 °C but no advantage over 16% EVA at 115 °C

Contact Information

Stephen Tseng President of Cahota, Agent for AT Plastics in China Beijing Office 86-10-58702140/41/42 stephen@cahota.com

Paul Rossignoli

Market Development Manager for AT Plastics Regional Office in USA 614-873-0688 prossignoli@atplastics.com

