SCREW DESIGN BASICS
The Processor Point Of View

Andrew W. Christie
Optex Process Solutions, LLC
www.optexprocesssolutions.com
Outline

• Define the goal
• Review basic extruder components
• Discuss process elements
• Look at basic screw design features
• Put the components together
• Review process function optimization
• Discuss operator control and assessment
• Wrap Up
What is the goal?

Provide the melted polymer to the forming process at the desired rate, uniformity, and quality to produce the finished product within specifications.
The Goal: Thin films & coatings

Extrusion Control

RESIN VARIABLES
EQUIPMENT VARIABLES
OPERATOR SET VARIABLES

MINIMUM GAUGE TOLERANCE
Screw Nomenclature

Compression Ratio is h_1/h_2

<table>
<thead>
<tr>
<th>Section</th>
<th>Depth</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed</td>
<td>Deep</td>
<td>Transport resin to next zone</td>
</tr>
<tr>
<td>Transition</td>
<td>Decreasing</td>
<td>Compress & melt polymer</td>
</tr>
<tr>
<td>Mixing</td>
<td>Shallow</td>
<td>Homogenize melt</td>
</tr>
<tr>
<td>Metering</td>
<td>Shallow</td>
<td>Deliver melt to die @ constant rate</td>
</tr>
</tbody>
</table>
Steps In The Process

• (Feeding to the extruder)
• Solids Conveying
• Melting
• Pumping
• Mixing
Take Note

The single screw extruder is basically a volumetric pump. It is not a positive displacement device. Variations in feeding result in variations in output. Solid conveying, melting, pumping and mixing occur simultaneously and are inter-dependent.
Resin Feeding

Feeding of the extruder is independent of screw design. For successful operation of any single screw extruder a consistent feed stream must be supplied. The feed stream must be of uniform composition and uniform weight.
Resin Feeding

• Driven by Gravity
• Opposed by
 – Frictional forces
 – Escaping air from compaction
 – Centrifugal force due to screw rotation

• Optimum Conditions
 – Low COF – Pellets to Hopper
 – Low COF – Pellet to Pellet
 – Large Volume to Surface Ratio of Pellets
 – Large Opening
Remember the process steps

- (Feeding to the extruder)
- Solids Conveying
- Melting
- Pumping
- Mixing

Process steps relate to design features
Solids Conveying

- Driven by Sliding Force Pellet to Barrel
- Opposed by Sliding Force Pellet to Screw
Extruder Performance

Slip - Stick Principle

Melt Plug No Output

Plug Flow Maximum Output

Slip

Stick

Stick

Slip
Solids Conveying

• Optimum Conditions
 – High COF – Pellets to Barrel
 – Low COF – Pellets to Screw Channel
 – High COF – Pellet to Pellet
 – Soft for Easy Compression
 • All temperature dependent
 – Low Surface to Volume Ratio of Pellets
 • Material dependent
 – High Channel Width to Depth Ratio
 • Screw design dependent
Coefficient of Friction - High Density Polyethylene vs. Steel at 70°F to 550°F
Polyethylene at 70°, 150° and 200°F (H.D. Polyethylene - Phillips 6009)
Static COF Data - Gregory

Coefficient of Friction
Polypropylene vs. Steel at 70°F to 550°F

Polypropylene at 70°, 150° and 200°F (Polypropylene - Hercules 6523)
LDPE Solids Conveying

- Screw RPM = 80
- Root Temperature = 50 °C
- Screw Diameter = 63.5 mm
- Channel Depth = 11.1 mm

- Screw RPM = 80
- Root Temperature = 100 °C
- Screw Diameter = 63.5 mm
- Channel Depth = 11.1 mm

Rate is Solids Conveying

• Output rate has a direct correlation to solids conveying

• The operator can impact solids conveying through temperature control in the solids conveying zone
 – Screw Root Temperature
 – Feed Cylinder Temperature
 – Barrel Zone Temperature (s) [over solids]

• Pressure variation indicates rate variation
 – Correct with stable solids conveying
Put the screw in the system!

Relative layout of spare screw to barrel & heaters.
Assumes 5 barrel zones of approximately equal length.
Melting

• Driven by
 – Viscous Heat due to Shearing
 – Heat Conduction from Adjacent Poly
 – Heat Conduction from Barrel & Screw

• Opposed by Heat Removal
Tadmor's Melting Model

Barrel Surface

Film of Molten Polymer

Solid Melt Interface

Solid Bed

V_{bx}

V_{sy}

V_{sy}

V_{sy}

V_{sy}

Circulatory Flow of Previously Melted Polymer

Flight

Screw

X

W

H
Melt Model Single Flight

1. Solid Resin Pellets
2. Compression starts - Some melting on barrel walls at the back of the flight
3. Melt pool starts to form - welting and compaction continues
4. Channel depth is decreasing - melt continues
5. Solid pellets are mostly melted
6. Mixing and melting are complete
Melting

- Optimum Conditions
 - High Viscosity & Shear Rate
 - Large Solid Interface with Barrel
 - Small Channel Width
Melt Separation Barrier
Melt Separation Barrier
Pumping

• Driven by Drag Flow
• Opposed by Pressure Flow
Drag Flow
Flow Path Along A Channel
Flow Velocity Components

Downchannel Velocity Fields

- **Drag Flow**
- **Pressure Flow**
- **Combined Flow**
Pumping

• Optimum Conditions
 – Low Head Pressure
 – High Entrance Pressure
 – High Screw Speed
 – High Melt Viscosity
Moving wall

Velocity inside the screw channel
Velocity inside the screw channel
Velocity inside the screw channel
Mixing & Mixtures

• Two types of mixtures
 – Solid in liquid
 – Liquid in liquid

• Two types of mixing
 – Dispersive
 – Distributive
Dispersive Mixing

Deformation of the comingled components resulting in a reduced component size and increased interfacial area. The deformation being accomplished through shear, elongation, or compression or in combination.
Distributive Mixing

A repetitive random or ordered bulk rearrangement of the comingled components. Does not require continuous deformation of the material.
Mixtures

- Polymer Melts with Liquids
 - One polymer with large bulk temperature gradients
 - Alloys of two or more polymers
 - A polymer with minor components
 - Plasticizers
 - Stabilizers
 - Liquid Colorant
 - Lubricant
Mixtures

• Polymer Melts with Solids
 – Polymer melt with unmelted polymer
 – Polymer melt with other solids
 • Pigments
 • Flame Retardants
 • Nucleating Agents
 • Contaminants
Mixer Performance

- Dispersion
- Distribution
- Efficiency
 - Pressure Drop
 - Streamlining
 - Relative Surface Area
Maddock’s (UCC) Mixer

- Dispersion – high shear over barrier
- Distribution – splits & recombines flow
- Depends on pressure for flow
- Dead ended channels
Gregory (Egan) Mixer

- Dispersive – high shear over barrier
- Distribution – splits & recombines flow
- Helical channels pump at all speeds
- Dead ended channels
Pineapple Mixer

- Dispersive – No high shear path
- Distributive – Multiple flow rearrangements
- Minimum pumping due to flight cuts
- Very large wetted surface area
Remember the goal

Provide the melted polymer to the forming process at the desired rate, uniformity, and quality to produce the finished product within specifications.
Understand Your System

• Resin Feed System
 – Hopper
 – Volumetric Feeder
 – Gravimetric Feeder

• Root Cooling
 – Depth
 – Temperature Control

• Feed Cylinder Cooling
 – Length
 – Temperature Control

• Barrel Heating
 – Zone Lengths
 – Number of Zones
 – Type of Heating / Cooling

• Screw Design
 – Type of Screw Design
 – Original Design Specification (Specific Mat’l Rate Verification)
 – Relationship of Screw Design Features to System Components
Extruder Performance

There is only one measure of extruder performance and that is melt quality. This is reflected in quantitative on-line measures as well as product performance measures.
Melt Quality

• Temperature Uniformity
• Pressure Uniformity
• Mixing and Dispersion
• Residence Time Distribution
Extruder thermocouples

- **Control Thermocouples**
 - Mounted in extruder or component wall to provide feedback for heater control

- **Melt Thermocouples**
 - Flush with polymer flow surface (T&P)
 - Immersed into the polymer flow
 - Shielded junction
 - Exposed junction
 - Adjustable depth immersion
 - IR Probe
Variable Depth Probe

Control

Melt

3 mm

6 mm

9 mm
Possible Temperature Pattern

Wall Center

Melt
System Components

PC → Box (RS232) → Converter (RS232) → RS485 → IR Scanner

- + Laser
- + Adjustable Mounting Base
- + DataTemperature Software

Extrusion Process
IR Scan of Melt Curtain
Melt Quality

- Odor
- Gel Count
- Optics
- MVTR
- Physical Properties
- Heat Sealability
- Weatherability
- Wear Resistance
- Color
Summary

• The Goal is to produce an output and melt quality appropriate for your product
• In order to get the most from your system
 – Know the system component arrangement
 – Know the screw design – system component relationship
• Get quality real time feed back
 – Control temperatures / speeds
 – Gravimetric rate
 – Melt pressure
 – Melt temperature
 • Time dependent
 • Position dependent
Thank You

Andy Christie
Optex Process Solutions, LLC
315-695-2199

www.optexprocesssolutions.com