



# Making an Agricultural Waste-to-Energy Facility Work on a South Carolina Swine Farm







## **Burrows Hall Bioenergy Project**

#### Agenda

- The Project
- The Challenges
- •Waste-to-Energy: Basics, Anaerobic Digestion, & Biogas
- Practical Considerations
- Our System
- Lessons Learned







## **Burrows Hall Bioenergy Project**

Funded by a grant from the South Carolina Department of Agriculture and administered by the South Carolina Energy Office.

#### The Partners:

- Farmer
- Santee Cooper (South Carolina's state-owned electric and water utility)
- SCIES (South Carolina Institute for Energy Studies)
- System Builder







### The Challenges

- Over 2,000 anaerobic digester (AD) systems on farms in Europe<sup>1</sup>
- 1500 in Germany<sup>2</sup>
- Advanced technologies in Europe
- 151 digester systems at commercial livestock facilities in US<sup>3</sup>
- None in SC
- None successful in NC & GA (despite a NC mandate that 0.07 percent of electric sales come from swine waste by 2012.)
- Relatively Small generation potential (100s of kW vs. MWs)
- Low cost of electricity in the Southeast

<sup>1</sup>Preusser, Steffen. 2006. Biogas Polities and Technologies in Germany. Agricultural Waste to Energy Workshop. Abbotsford, British Columbia, July 19.

<sup>2</sup>BBI International, Lakewood, Colorado

<sup>3</sup>AgStar, 2010





## Waste-to-Energy

- Agricultural Waste manure
- Agricultural Waste crop residue
- Food Processing rendering, preparation, fruit & vegetable
- Municipal Wastewater
- Industrial Waste
- Municipal Solid Waste (Landfill gas)
- Biomass other
- Energy Crops





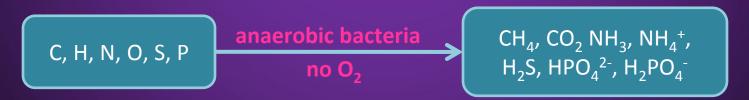


## **Energy Conversion Options**

- Direct Combustion
- Gasification
- Anaerobic Digestion








## **Anaerobic Digestion**

anaerobic decomposition: decomposition of organic matter by bacteria in the absence of oxygen

#### organic molecules:

- carbohydrates
- proteins
- amino acids
- lipids



multi-step process







## Biogas

- $60 65\% \text{ CH}_4 \text{ (methane)}$   $35 40\% \text{ CO}_2$

H<sub>2</sub>S

other

- flammable as-is
- Burn biogas as source of heat.
- Clean biogas for sale as natural gas.
- Burn in an engine for mechanical/electrical energy.
  - internal combustion engine or turbine <sup>1</sup>
- CHP = Combined Heat & Power
- Burn ("flare") to convert CH<sub>4</sub> to CO<sub>2</sub> <sup>2</sup>

<sup>1</sup>or Fuel Cell <sup>2</sup>CH<sub>4</sub> 21x more potent than CO<sub>2</sub> as GHG







## **Anaerobic Digestion**

- Total Solids (T.S.)
- Volatile Solids (V.S.)
- COD
- "organic load"
- Hydraulic Retention
   Time (HRT)

#### assumptions:

- 50% conversion of C to CH<sub>4</sub>
- gas turbine: 25% efficiency
- gas engine: 30 40% efficiency
- AD-turbine: 1,285 BTU/lb VS
- AD-engine: 2,056 BTU/lb VS







### **Example Energy Estimate**

#### example: Swine

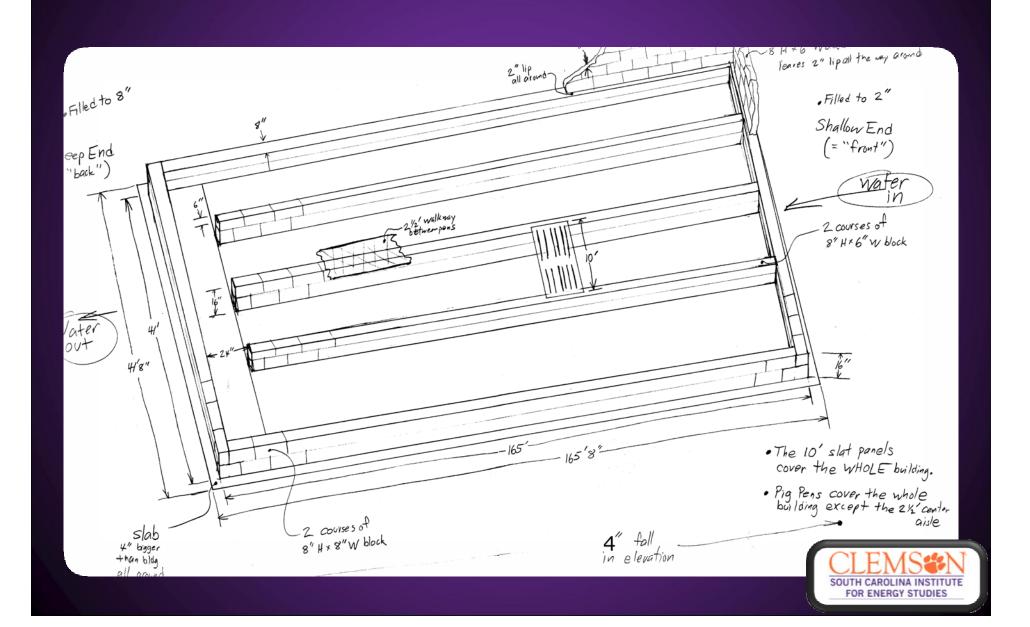
- TS = 6.34 lb/d/1000# (1000# = 1 A.U.)
- VS = 5.40 lb/d/1000#
- 10,000 animals
- average animal wt = 150 lb
- 5.40 lb/d/1000# x 10,000 animals x 150 lb/animal
   x 1 A.U./1000# = 8,100 lb VS/day
- 8,100 lb VS/day x 0.6020 kW⋅h/lb VS → 203 kW







## Agricultural Waste: Practical Considerations


- CAFO = Concentrated Animal Feeding Operation
- Free-range
- Type of animal
- Manure handling, management, water management
- % solids
- Bedding materials















## AD Systems: Practical Considerations

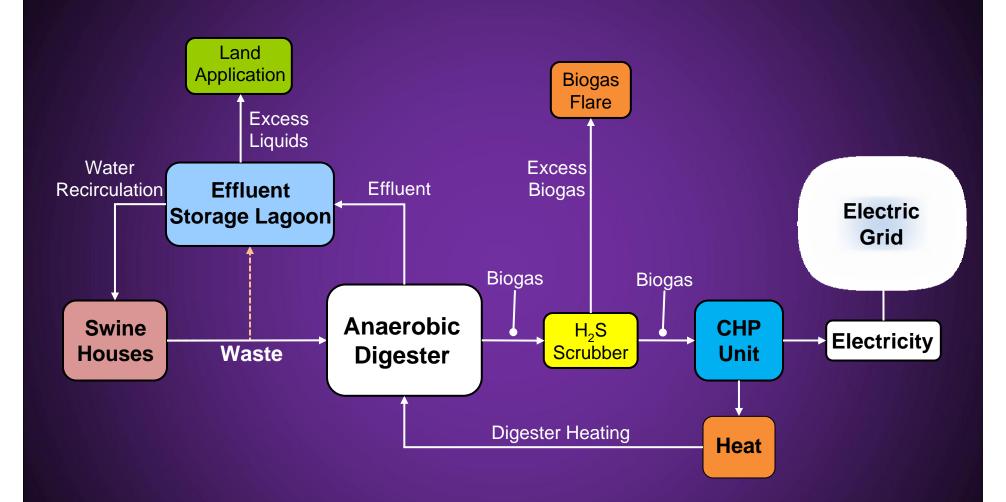
- Batch
- Continuous
- Complete Mix
- Plug Flow
- Fixed Film
- Temperatures:
  - < 30°C (psychrophilic) (<86°F)
  - 30 40°C (mesophilic) (86-104°F)
  - 40 55°C (thermophilic) (104-131°F)

- Tanks
- Lagoons








## **Anaerobic Digester**

- New lagoon
- Lined, covered, insulated
- Mixed
- Heated to 95°F (mesophilic)
- Gas collection
- Rain water collection
- > 20 year life

















Digester Construction TAPPI













## Power Generation – Piston Engine

- engine
- Complete generation
  - and CHP system
- 38% efficiency

4-stroke industrial
 Optimized for biogas









#### **Economics**

- Sale of Electricity
- Carbon Credits
- Renewable Energy Certificates
- Renewable Energy Production Incentives
- Renewable Energy Production Tax Credits
- Sale of Byproducts?
- Also consider "behind the meter" options.







#### **Lessons Learned**

- Chose simple, proven technologies
- Reciprocating engine vs. turbine (+ gas conditioning)
   vs. fuel cell
- Sale of power
- Agreements
- Permits
- Co-digestion could increase production.







#### Sale of Power

- Good PPA a necessity!
- Example: AD system in another state
- Example: a co-op's position on small renewables
- Example: a large utility's position on small renewables
- No net metering, no RPS in South Carolina.







## **Business Agreements**

- Power Purchase Agreement (PPA)
- Waste Stream/Lease Agreement
- Interconnection Agreement







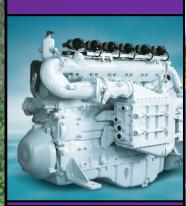
#### **Permits**

- SC DHEC Agricultural Permit
- SC DHEC Air Quality Permit
- County Building Permits

- No increase in hog operation
- No change in water discharge








## **Burrows Hall Bioenergy Project**

South Carolina's first Agricultural Waste-to-Energy Project

on-line June 2011

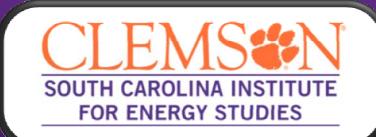








• 180 kW








## South Carolina's First Agricultural Waste-to-Energy Project

(864) 656-2267
Craig Campbell
ccampbell@clemson.edu

