

Drive Cost Savings through Insulation and Enhanced Maintenance Practices to Energy Efficiency

How many people would invest \$200,000?

- → 20 month payback
- → Internal Rate Return (IRR) 63%
- → Annual Energy Savings \$175,000 for 15 years

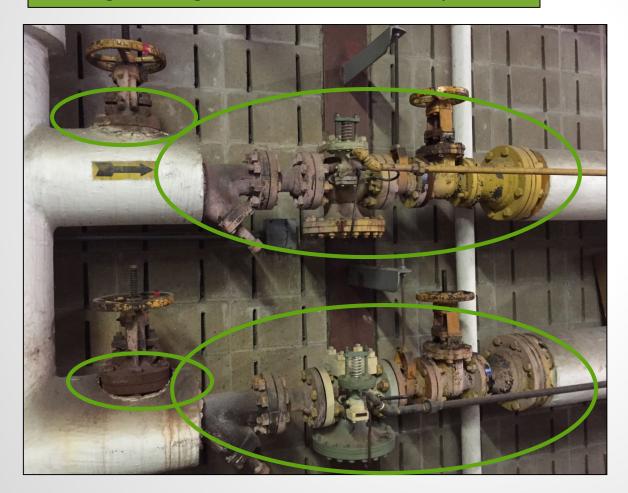
Best Practice

ROI

Methodology

Applications

Pipes are Insulated Flanged Fittings, Complex Surfaces remain Uninsulated Insulation is Removed for Inspection, Service, Repair Insulation is Not Reinstalled



Results In

Large Radiant Heat Loss
Most Waisted Energy is in Fittings, NOT pipe
Gate Valves, Control Valves, Strainers, Flanges

Pressure Reducing Station (4" @ 150 psi)

16 flanged fittings = 41.8 Linear Feet of Pipe

Upper Run

Gate Valve Stem

Strainer

Flanged Spool

Pressure Reducer Valve

Flanged Spool

Gate Valve

Reducer

Flange

Lower Run

Gate Valve Stem

Strainer

Flanged Spool

Pressure Reducer Valve

Flanged Spool

Gate Valve

Reducer

Flange

Upper Run

Gate Valve Stem

Strainer

Flanged Spool

Pressure Reducer Valve

Flanged Spool

Gate Valve

Reducer

Flange

Lower Run

Gate Valve Stem

Strainer

Flanged Spool

Pressure Reducer Valve

Flanged Spool

Gate Valve

Reducer

Flange

Surface Area Drives Energy Savings

Installed Cost: \$2,636

Energy Savings: \$2,149

Installed Cost: \$2,636

Energy Savings: \$2,149

Installed Cost:

\$5,272

Energy Savings:

\$4,298 per Year

Payback: 14.7 Mo.

IRR: 59%

Cost Analysis

Sample Savings – Bare Valves

(Fuel Cost \$17.63/ 1000 lbs Steam @ 350F)

Gate Valve Size	Operating Cost Bare	Oper. Cost Insulated	Energy Savings/Yr
10" 150#	\$ 2,121	\$ 148	\$ 1,973
8" 150#	\$ 1,574	\$ 109	\$ 1,465
6" 150#	\$ 1,174	\$ 82	\$ 1,092
4" 150#	\$ 813	\$ 57	\$ 756
2 ½" 150#	\$ 547	\$ 39	\$ 508

Numbers are annualized

Cost Analysis

Compare Valves SF to Pipe SF

Gate Valve Size	Gate Valve SF	Pipe Size (IPS)	Equal LF of Pipe
10" 150#	15.9 SF	10"	5.9
6" 150#	8.8 SF	6"	5.2
2 ½" 150#	4.1 SF	2 ½"	5.7

SF - Surface Area

Cost Analysis

Surface Area is Compelling

Bare Fittings	LF Bare Pipe	Facility Size	Investment	Annual Savings
60	334	Mechanical Rm	\$18,000	\$12,000
600	3,340	Hospital	\$180,000	\$120,000
1600	8,896	Small College	\$480,000	\$320,000
3200	17,792	University	\$960,000	\$640,000
6400	35,584	Large Campus	\$1,920,000	\$1,280,000

Best Practice

ROI

Methodology

Applications

Pay Attention to the "Un-Insulated" surfaces
Treat All Surfaces
Manage the System
Regardless of what materials are applied

Treat Insulation as a Managed Asset

Energy Savings drops to the bottom line as profit Proper insulation can add to your competitive edge

Best Practice

Define Potential Opportunities Energy Survey Development

Quality Control

Apply "Proven" Design Specification Standards

Quality Product via CAD and CNC Driven Manufacturing

Manage Assets
Incorporate into SOP/CMMS Systems

Blanket Maintenance Program
Check Every 2 Years After Initial Installation Manage the Investment

Best Practices

Be careful What You Ask For

Application Drives the Specification Standard

Food Processing

Wash down condition

Blanket is not suitable for this application

Order the blanket to standard & specify the operating conditions (Application)

Best Practices

Apply a Proven Design Standard

THERMAL BLA	ANKET HEAT SHIE	LD				
Specification	Product	Test Standard	Applications	Service	Attribute	Temperature
LT200VLP	Thermal Blanket	ASTM-C335	Valves, Fittings, Pumps	Chilled Water/Hot Water	Non-Porous	250
LT250VP	Thermal Blanket	335	Valves, Pumps, Chiller Heads	Chilled Water/Hot Water	Non-Porous	250
LT450SS	Thermal Blanket	ASTN 5 / E-84	Valves, Fittings, Pumps	Steam/Hot Water	Non-Porous	450
LT550SSM	Thermal Blanket	A 335		Steam	Non-Porous	550
MT800SGM	Thermal Blanket	А 335	Valves, Fittings, Steam Turbines	Steam	Porous	800
HT1100MSGM	Thermal Blanket	ASTM-C3.5	Steam Turbines, T&T Valves	Steam	Porous	1100
LT500HS-AG	Heat Shield	ASTM-C335	Steam Traps, Boiler Doors	<u>Ctoon</u> j	Porous	500
LT500HS-TC	Heat Shield	ASTM-C335	Steam Traps, Boiler Doors	n n	Porous	500
LT550LFP-M	Thermal Blanket	ASTM-C335	Expansion Joints, Pipe, Valves, Drip Legs		Chemical Resister	550
LT450TT	Thermal Blanket	ASTM-C335 / E-84	Valves, Pumps, Eqipment	Steam/Che ical Process	Non-Wicking	450
LT550TTM	Thermal Blanket	ASTM-C335	Valves, Pumps, Eqipment	Steam/Chemical Process	Non-Wicking	550
MT800TGM	Thermal Blanket	ASTM-C335	Valves, Fittings, Steam Turbines	Chemical Process	Wicking	800
HT1100MTFM	Thermal Blanket	ASTM-C335	Valves, Pumps, Eqipment	Chemical Process	Non-Wicking	1100
LT300LFP-EF	Thermal Blanket	FDA-21 CFR 177.1550	Valves, Pumps, Kettles, Pasturizers	Food Processing / Sanitary	Non-Porous/No-Fiber	300
LT550LFP-FG	Thermal Blanket	FDA-21 CFR 177.1550/ASTM E-136	Valves, Pumps, Kettles, Pasturizers	Food Processing / Sanitary	Non-Porous	550
HS1200FF-W	Heat Shield	ASTM-C335	Kettles, Friers, Piping, Pasturizers	Food Processing / Sanitary	Non-Porous	1200
MT850AGM	Thermal Blanket	ASTM-C335	Small Engine Exhaust, Mufflers, Turbo's	Power Generation/OEM	Porous	850
MT850AGGM	Thermal Blanket	ASTM-C335	Small Engine Exhaust, Mufflers, Turbo's	Power Generation/OEM	Porous	850
HT1100MSGM	Thermal Blanket	ASTM-C335	Mufflers, Turbo's, Exp Joints, Piping	Power Generation/OEM	Porous	1100
HS1200FF-S	Heat Shield	ASTM-C335	Gas Turbine Housings, Exhaust Ducting	Power Generation/OEM	Non-Porous	1200
HT1300MAGM	Thermal Blanket	ASTM-C335	Silencers, Turbo's, Ducting, Manifolds	Power Generation/OEM	Porous	1300
HT1500MSSiM	Thermal Blanket	ASTM-C335	Silencers, Turbo's, Ducting, Plenums, Converters	Power Generation/OEM	Porous	1500
HT1500MFFM	Thermal Blanket	ASTM-C335	Silencers, Turbo's, Ducting, Plenums, Converters	Power Generation/OEM	Non-Porous	1500
•						
LT550SG	Thermal Blanket	ASTM-C335	Extruder Barrels, Blow Molding	Plastics Extrusion	Porous	550
MT850SSi	Thermal Blanket	ASTM-C335	Extruder Barrels, Blow Molding	Plastics Extrusion	Porous	850
	ANKET ACOUSTIC	SHIELD				
Specification	Product		Applications	Service	Attribute	Temperature
LT250A-VP	Acoustic Blanket	ASTM-E1222/ISO-15665	Liquid Chillers, Compressors, Pumps, Fans	HVAC/Commercial/OEM	Non-Porous	250

Best Practice

ROI

Methodology

Applications

Pulp & Paper – Tissue Company
Savings Over Multiple Locations
(General Numbers for Illustration Purposes)

Return on Investment

Cash Flow Calculations	Year 1	Year 2
Investment	\$ (2,718,583)	\$ -
Annual Labor Costs	\$ (52,619)	\$ (52,619)
Annual Energy Savings	\$ 1,468,035	\$ 1,468,034
Depreciation (Straight Line)	\$ (271,858)	\$ (271,858)
EBITDA	\$ 1,143,557	\$ 1,143,557
Tax Provision	\$ (400,245)	\$ (400,245)
Net Income	\$ 743,312	\$ 743,312
Add Back Depreciation	\$ 271,858	\$ 271,858
Add Back Investment (1st Yr Only)	\$ (2,718,583)	n/a
Cash Flow	\$ (1,703,412)	\$ 1,015,171

Financial Calculations Based on Customer Cost of Capital (9%)

Return on Investment

Financial results	10 Years	15 Years
Payback Period	20.2 Months	20.2 Months
Net Present Value Project	\$ 4,811,605	\$ 6,192,185
Return On Investment (ROI) Including Operating Cost	53%	53.0%
Return on Investment (ROI) Simple – No Operating Costs	60%	60%
Cash Flow	\$ 7,433,123	\$ 12,033,223

Is this a compelling measure to warrant capital investment?

Best Practice

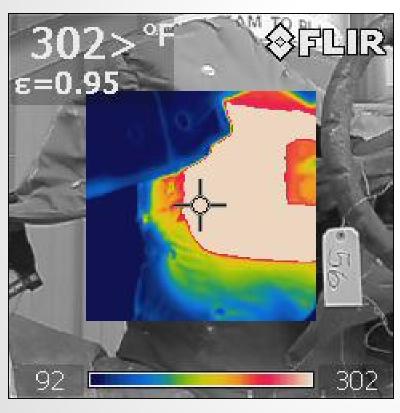
ROI

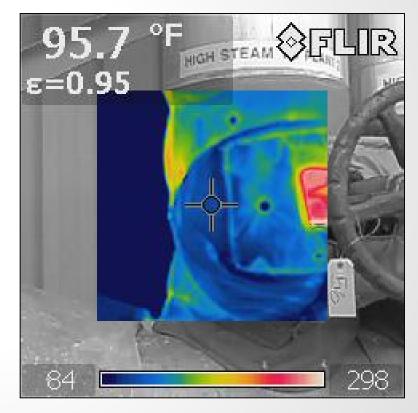
Methodology

Applications

Perform Energy Survey
Calculate the ROI

Pay Attention to the "Un-Insulated" Surfaces
Treat All Surfaces


Apply a "Proven" Design Standard


Assure a Quality Installation

Manage the System (Check every 2-3 yrs)

Methodology

Perform an Energy Survey

Before After

Methodology

Track the Steam System From Boiler to Condenser

Methodology

Find Untreated Fittings

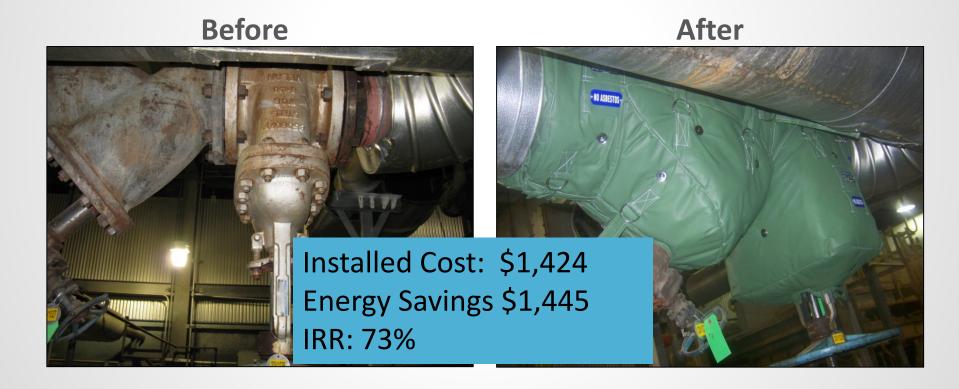
4 Fittings 6" 300 lbs

InstalledCost \$2,537

Energy Savings \$2,539

IRR 72%

Best Practice


ROI

Methodology

Applications

Applications
Pulp & Paper
Mfg. Tissue

8" 150# Gate Valve 8" 150# Strainer

3" x 1-1/2" – 11 Gould Pump

Before

Thermal Blanket Insulation can be applied to "All Complex Surfaces"

After

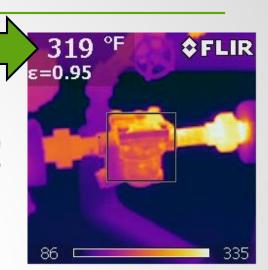
Multistage Feedwater Pump

Before

Installed Cost: \$2,389
Energy Savings: \$1,692
IRR: 51%

692 After

After Condenser Ejector System



Applications – Steam Traps

Impact is Compelling!

(light weight / easy to install / remove and re-install)

After

Applications - Steam Traps

How Many Steam Traps in Your Inventory!

Ratio 1:1 to 1:3 Ratio
Steam Traps to Uninsulated Steam Fittings

Sample Steam Trap Savings

Armstrong® Model ¾" 880 Steam Trap

Surface Temp: 274 F

Ambient Temp: 80 F

Heat Shield Cost: \$65.00

Energy Savings: \$49.55 per year

Payback Period: 17.2 months

IRR: 55%

Acoustic Blankets

Apply Acoustic Blanket as a direct (Wrap) to the radiant source.

Acoustic Blanket will "Attack the Noise" @ the source.

Low frequencies show slight increases due to increased radiant surface areas created by increased geometry. Impact is negligible.

Mid to high frequencies are greatly reduced.

Reduction targets range from 4 to 12 DBA.

Treat complex surface geometry (Compressors, Pumps, Motors).

Water Cooled Screw Liquid Chiller

How many people would invest \$200,000

- → 20 month payback
- → Internal Rate of Return (IRR) 63%
- → Annual Energy Savings \$175,000 for 15 years

If the Answer is YES, we need to talk about your plant's untreated fittings!

What other projects deliver IRR 63%?

Contact Information

Shannon Enterprises of WNY, Inc.

Phone: 716-693-7954

Fax: 716-693-1647

Email: sales@shannonglobalenergy.com

Web Site: www.shannonglobalenergy.com

INSULTECH® Blanket Insulation

Manage your asset Manage your insulation

Thank You