Preface
Acknowledgments
1. Distribution Packaging's Role in the Corporate Enterprise
2. Dynamic Theory: Foundations
 2.0 Objectives
 2.1 Fundamentals
 2.2 Falling Objects
 2.3 Vibration
 2.4 Study Questions
3. Dynamic Theory: Vibration
 3.0 Objectives
 3.1 Unforced Sinusoidal Vibration
 3.2 Forced Vibration
 3.3 Magnification
 3.4 Vibration Testing
 3.5 Random Vibration
 3.6 Developing Random Vibration Profiles
 3.7 Study Questions
4. Shock Fragility
 4.0 Objectives
 4.1 Shock Pulses
 4.2 Drop Heights
 4.3 Impact and Rebound
 4.4 Damage Boundary Curve
 4.5 Study Questions
5. Dynamic Theory: Advanced
 5.0 Objectives
 5.1 Shock Response Spectrum (SRS)
 5.2 Fatigue Damage Boundary
 5.3 Study Questions
6. Protective Packaging Development Process
 6.0 Objectives
 6.1 Types of Data Used
 6.2 Product Robustness
 6.3 Package Design
 6.4 Performance Evaluation
 6.5 Feedback
7. Cushioning
 7.0 Objectives
 7.1 Cushioning Basics
 7.2 Cushioning Materials
 7.3 Cushion Curves
 7.4 Cushion Design
 7.5 Cushion Shapes and Placement
 7.6 Engineered Cushion Systems
 7.7 Study Questions
8. Hazards of the Logistical Environment
8.0 Objectives
8.1 Shock, Drop and Impact
8.2 Vibration
8.3 Compressive Load
8.4 Atmospheric Conditions
8.5 Use Sustainability to Connect Further in the Value Chain
8.6 Build Connected Futures that Extend the Value Chain
8.7 Questions on Packaging Value Chain
8.8 Conclusion
8.9 References

9. Measuring Logistical Hazards
9.0 Objectives
9.1 Observation
9.2 Measurement
9.3 Data Analysis
9.4 Data to Design Specifications
9.5 Data to Test Specification

10. Product Damage Potential
10.0 Objectives
10.1 Product Development and Use Environments
10.2 Characteristics of Use Environments
10.3 Product Distribution Environments
10.4 Non-use Environment Damage Modes

11. Quantifying Product Fragility
11.0 Objectives
11.1 Shock Test Equipment
11.2 Pulse Programming
11.3 Damage Boundary Steps
11.4 Sample Management
11.5 Results Interpretation

12. Product Design for Distribution
12.0 Objectives
12.1 Product Ruggedness Versus Distribution Hazards
12.2 Protective Packaging Cost
12.3 Guidelines for Developing the Protective Package System

13. Shipping Container Design
13.0 Objectives
13.1 Primary, Secondary, Tertiary, Unit Load
13.2 Linking Container to Environment
13.3 Corrugated Performance
13.4 Influencing Factors
13.5 Box Compression Test
13.6 Stacking Performance

14. Interior Packaging Design
14.0 Objectives
14.1 Isolation and Deflection
14.2 Void Fill
14.3 Blocking
14.4 Partitions, Pads and Liners
14.5 Cushion Configurations
14.6 Surface Protection
14.7 Multiple Products And Kits

15. Unit Load Design
15.0 Objectives
15.1 Purpose of Unit Loads
15.2 Handling Methods
15.3 Pallet Patterns and Efficiency
15.4 Vehicle Loading Efficiency
15.5 Load Stability and Integrity

16. Considerations for Selected Industries
16.0 Objectives
16.1 High-value, Fragile Products
16.2 Regulated Industries
16.3 Custom and Low-Volume Products

17. Package Performance Testing
17.0 Objectives
17.1 Ship/Field Tests
17.2 Engineering/Development Tests
17.3 General Simulation
17.4 Basic Design of Experiment
17.5 Shock and Drop Tests
17.6 Vibration Tests
17.7 Compression Testing
17.8 Atmospheric Conditioning

18. Packaging Laboratory
18.1 Designing the Packaging Laboratory
18.2 Material Test Equipment
18.3 Package Test Equipment
18.4 Data Collection and Documentation

19. Performance Testing Protocols
19.0 Objectives
19.1 Test Methods
19.2 Test Standards
19.3 Standards Organizations
19.4 Standards Writing Process

20. Hazards of the Logistical Environment
20.0 Objectives
20.1 Linking Hazard to Test
20.2 Shock and Drop
20.3 Random Vibration
20.4 Compression
20.5 Atmospheric Conditions and Hazards
20.6 Order of Test
20.7 Test Validation

21. Future Perspectives
21.1 Testing in the Future
21.2 Advanced Analysis and Documentation
21.3 Virtual Testing

Appendix
Appendix A1
Definitions