

Corona Treatment of Paper Experiences and Findings

Dr. Ralf Weber 12.1 + 7673

Content

- Current Status of Experiences
- Coating Trials with different Treatment methods.
 - Test design
 - Results
- Wetability improvement on Paper
- Short Comparison Flame vs. Corona
- Conclusion

Current Status and preconditions

- Several Surface Treatment methods are used to improve functionality of surfaces.
- Mainly to increase wetability and adhesion.
- Experiences have mostly been made on plastic films and most applications exist in this area.
- Some research has been done on treatment of paper but there is no big picture yet.
- "Paper" is not just a substrate as there is a variety of papers and cardboards on the market. Many different coatings and additives are applied and it is expected, that results vary according to these differences.

Goal of this paper

- This presentation gives an overview. We are no experts in the process but in plasma, corona and machinery. The presentation just shows, what we observed during trials.
- We performed several trials and had a look at coating properties and wetability.
- Please keep in mind: Different substrates may lead to different results!

1. Treatment of Cardboard

Paper 12.1 Dr. Ralf Weber

Treatment of Cardboard: Settings

- A line was chosen to perform coating trials with several treatment methods at different speeds (up to 800 m/min).
- Flame / Ozone / Corona had to be available and controlled to perform several settings.
- Lab equipment necessary.
- To avoid influences from different inks, back side of a 270 gsm cardboard was used.

Paper 12.1 Dr. Ralf Weber

Treatment of Cardboard: Settings II

- Working width: 513 mm
- Speed: 400 / 600 / 800 m/min
- Ozone: 4-6 m³/h depending on speed
- Flame: 1690 3000 l/min (@ .25:1; burner distance 40 mm)
- Corona: 15 40 kW
- Melt Temperature: 315°C LDPE
- Grammage: 20 gsm

Treatment of Cardboard: Measurements

- If possible we performed 180 degree peel strength in dry conditions for 15 mm sample width, 100 mm/min cross-head speed with Instron tensile testing. Residual fibers were observed.
- Residual moisture after different treatments was measured.
- Optical microscopy gave some insights on paper surface after treatment.

Treatment of Cardboard: Measurements

- For distinction 3 grades of adhesion were used:
 - Grade 1: many fibre clusters on the PE after peel strength test, or adhesion impossible to measurement due to the breaking of the LDPE layer due to high adhesion.
 - Grade 2: less fibres than grade 1 but still fibres on the PE after peel strength test.
 - Grade 3: total and easy delamination between paper and LDPE.

Coating: Results I (400 m/min)

ID	Speed [m/min]	Corona*	Treating Flame**	Ozone***	Adhesion [N/m]	Adhesion grade
1	400	Off	std*	std**	NM	1
2	400	37,5	std	std	NM	1
3	400	37,5	std	off	NM	1
4	400	75	std	off	NM	1
5	400	100	std	off	NM	1
6	400	100	off	off	NM	1
7	400	75	off	off	NM	1
8	400	37,5	off	off	NM	1
9	400	37,5	off	std	NM	1

* In Wmin/m²; ** Std gas flow = 1690 l/min; ***std ozone flow = 4 m³/h

Coating: Results I (800 m/min)

ID	Speed [m/min]	Treating	Grammage [gsm]	Adhesion [N/m]	Adhesion grade
1	600	Flame + Corona + Ozone	21.69	NM	1
2	800	Flame + Corona + Ozone	20.71	NM	1
3	800	Flame + Corona	20.49	NM	1
4	800	Flame	20.69	13	3
5	800	Corona	21.24	9	3
6	800	Untreated	21.37	3	3

Corona Dose = 50 Wmin/m², * gas flow = 3000 l/min; ozone flow = 6 m³/h

Coating: Results II (Deviation)

Untreated

Flame

Corona

Sample ID	Average Load (N/m)	
2	3	
3	3	
4	3	
5	3	
6	4	
std	0,42	

Sample ID	Average Load (N/m)
2	16
3	14
4	20
5	17
6	17
Std	3,76

Sample ID	Average Load (N/m)
2	10
3	10
4	10
5	11
6	10
Std	0,96

 Δ Temp = 20°C

 Δ Temp = 17°C

Coating: Results III

- Measurements showed according to experience, that flame treated paper had less residual humidity than corona treated paper.
- Flame treated paper is more brittle than Corona treated paper.
- Not a new finding, but approved by the trials: Standard deviation of tear strength is higher with flame treated paper. Corona treated paper shows better uniformity.

Coating: Results IV

• Optical microscopy showed that neither flame nor corona damaged the cardboard surface.

- We were not able to see fibres cutting through the melt and create pinholes in the coating.
- At 800 m/min neither flame nor corona is enough to create suitable adhesion conditions. Using flame together with corona showed adequate adhesion.

2. Wetability improvement on Paper

Paper 12.1 Dr. Ralf Weber

Wetability improvement on Paper

<u>Test design:</u>

- Regular Corona Treatment Station
- Ceramic roller / ceramic electrodes
- Several Corona Doses applied
- Clay Coated Paper with
 150 gsm

Paper 12.1 Dr. Ralf Weber

NCS	uits							
Dose	Speed	Power		CER -		10-15-C		
Wmin/m ²	m/min	W	W/cm	numbe				
0,00	0	0	0	0		-		
10,00	50	650	0,63	8	1300		62°	
20,00	50	1300	1,25	8	1300		45°	
40,00	50	2600	2,5	8	1300		19°	
60,00	50	3900	3,75	8	1300		18°	
80,00	50	5200	5	8	1300		13°	

Results

18

Paper 12.1 Dr. Ralf Weber

Dose	Speed	Power		CER -			
Wmin/m ²	m/min	W	W/cm	numbe			
0,00	0	0	0	0			
10,00	50	650	0,63	8	1300	62°	
20,00	50	1300	1,25	8	1300	45°	
40,00	50	2600	2,5	8	1300	19°	
60,00	50	3900	3,75	8	1300	18°	
80,00	50	5200	5	8	1300	13°	

Results

Paper 12.1 Dr. Ralf Weber

ICO	uito						
Dose	Speed	Power		CER -			
Wmin/m ²	m/min	W	W/cm	numbe			
0,00	0	0	0	0			
10,00	50	650	0,63	8	1300	62°	
20.00	50	1300	1.25	8	1300	45°	
40.00	50	2600	2.5	8	1300	19°	
60.00	50	2000-	2 75	0	1200	100	
60,00	50	3900	3,75	8	1300	18*	_
80,00	50	5200	5	8	1300	13°	

Results

20

Findings on Wetability

- Regular Corona Treatment improves wetability.
- It increases proportionally to the energy input.
- Clay Coating is not a drawback but may induce need for higher corona doses.
- As wetability is one of the components of adhesion it is expected, that adhesion will also increase.
- By the way: Hot air does not show any effect. I.e. moisture is not the only parameter for adhesion.

Conclusions I

- Treatment results are comparable. Flame and Corona lead to better wetability and adhesion.
- Increase of wetability is not (only) induced by changes in humidity (hot air alone shows no result at all).
- At 800 m/min none of both is able to create sufficient adhesion on its own.

Conclusions II

• Material is less dry with corona treatment and therefore easier to handle.

 Flame treatment leads to higher adhesion values but at a higher standard deviation. The controlled corona against a backup roll leads to a more uniform surface.

 Even at high speeds, surface treatment with corona stays uniform over the whole surface.

Comparison Flame vs. Corona

- Treatment results comparable and more uniform with corona.
- Corona treated paper does not need any remoistening
- Less brittle substrate and easier to handle.
- No fire hazard with Corona treatment, no extinguishing equipment needed.
- Low running costs and easy to install.

Corona Treatment: Recommendations

- Station as close as possible to the laminator and as less idle rollers as possible in between.
- Industry treats paper between 17 and 60 Wmin/m².
- Clearance between electrodes to prevent congestion due to dust.
- Stations should be easy to clean to enable high availability of the process.

Thank you for your attention

• Your questions ...