Black Liquor Evaporation
Optimizing Performance

Jean-Claude Patel
A.H. Lundberg Associates, Inc.
Naperville, IL

Topics

- Introduction
- Surface Condensers & Vacuum Systems
- Condensate Segregation
- Mist Elimination
- Hybrid Falling Film / Rising Film Trains
- FC Concentrator Upgrades
A New Era for the P&P Industry

- Environmental regulations
 - Tightening of the liquor cycle
 - Reduced color and BOD discharges
 - Foul condensate stripping
 - Higher NPE load in recovery island
 - Higher firing liquor % TS
 - NCG Collection
 - Reduced air emissions.

A New Era : Environmental Regulations

- Energy Cost
 - Financial viability of operations
 - Reduce energy usage
 - Optimize on-site energy production processes
 - Get more efficient = Be more competitive
A New Era for the P&P Industry

- Evaporation plant
 - Biggest consumer of steam & cooling water
 - Emphasis: Better performance & energy efficiency
 - Modernize and upgrade evaporation facilities.

Typical Upgrade Programs

- Gain BL throughput and concentration
 - Often well above original design
 - Retire older less efficient evaporator trains

- Condensate segregation
 - Reduced foul condensate generation
 - Minimized stripping or biological post-treatment costs
 - Improved condensate re-use within the mill
Typical Upgrade Programs

- Reduce liquor entrainment
 - Minimized soda losses
 - Re-use of process condensate
- Look at the whole recovery island
 - WBL composition & % TS (Recaustizing/Washers)
 - Evaporators= Source/Sink for low grade heat
 - Concentrator upgrades for higher solids
 - Indirect Liquor Heaters

Typical Upgrade Programs

- Optimize each design parameter individually
 - Unique features of the evaporators
 - Where are the weak links?
 - Liquor properties
 - Can they be improved? (Whole mill issue)
 - NPE Removal
- Overall Power & Recovery configurations
- Upgrade goals & Budget limitations
Typical Upgrade Programs

- Review a few examples
 - Common performance problems with the MEEs
 - Typical upgrade programs that can be undertaken.

- **Caution**
 - *What worked well at some location may not be appropriate at another.*

Surface Condensers & Vacuum Systems

- **Insufficient vacuum**
 - Most common operating problem encountered
 - Poor vacuum lowers available working \(\Delta T \)
 - Translates into a loss in evaporation capacity
Poor Vacuum Impact on ΔT

- Steam Temperature: 274 °F
- Condenser Temperature: 132 °F
- Actual ΔT: 98.3 °F inclusive of losses due to BPR

<table>
<thead>
<tr>
<th>Vacuum</th>
<th>Cond. Temp.</th>
<th>Actual ΔT</th>
<th>Gain/Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.5 "Hg</td>
<td>129.0 °F</td>
<td>101.3 °F</td>
<td>+3.0%</td>
</tr>
<tr>
<td>25.0 "Hg</td>
<td>132.0 °F</td>
<td>98.3 °F</td>
<td>-</td>
</tr>
<tr>
<td>24.0 "Hg</td>
<td>140.0 °F</td>
<td>90.3 °F</td>
<td>-8.1%</td>
</tr>
<tr>
<td>23.0 "Hg</td>
<td>146.5 °F</td>
<td>83.8 °F</td>
<td>-14.7%</td>
</tr>
<tr>
<td>22.0 "Hg</td>
<td>152.0 °F</td>
<td>78.3 °F</td>
<td>-20.3%</td>
</tr>
<tr>
<td>21.0 "Hg</td>
<td>156.7 °F</td>
<td>73.6 °F</td>
<td>-25.1%</td>
</tr>
<tr>
<td>20.0 "Hg</td>
<td>161.0 °F</td>
<td>69.3 °F</td>
<td>-29.5%</td>
</tr>
</tbody>
</table>

Surface Condensers & Vacuum Systems

- Need higher steam pressure
 - Actual ΔT raised back up
 - Capacity re-gained
 - Steam economy is lost due to additional preheat loads
Many vacuum systems are grossly undersized
- Evaporator capacity has been pushed without consideration for achievable vacuum

Poor NCG pre-cooling is also very common
- Higher volume to evacuate due to moisture

Excessive air leakage
- Maintenance issue

Surface condenser problems
Surface Condensers

- Insufficient condensing surface
 - Unrealistically high heat transfer coefficient was used

- Solutions:
 - Install an auxiliary condenser
 - Increase water flow
 - Run at higher condensing temperature thus higher steam pressure (costly)

Surface Condensers

- Insufficient water flow
 - Excessive usage elsewhere
 - Worn water pump
 - Inadequate piping, flow restrictions
 - Fouled tubes on the water side
 - CaCO3 scale from hard water, etc.
 - Biological slime
 - Hydroblasting of the tubes required
Surface Condensers

- Leaky water boxes
 - Water short-circuits one or more passes
 - Some condensing area effectively by-passed

- Inadequate NCG venting
 - Typically due to poor shell baffling set-up
 - Pockets of gas accumulate in some areas of the shell
 - Additional vent nozzles may have to be installed

Surface Condensers

- Shell side fouling
 - Excessive, even if infrequent, entrainment or foaming
 - Dried up liquor
 - Anthraquinone
 - Removal is difficult
 - Best accomplished by boiling with specialty chemicals
 - Upgrade mist eliminators
Mist Elimination

- Minimize black liquor carry-over in vapors sent to the next effect.
- Occurs in all the bodies but most prominent in vacuum effects.

Horizontal Flow

Vertical Flow
Mist Elimination

- Impact on operation of excessive entrainment
 - Chemical (soda) loss
 - Compensated via additional salt-cake make-up (Cost)
 - Fouling of heating elements and condenser
 - Translates into poor heat transfer, higher ΔT
 - Color contamination in condensate
 - May prevent re-use within the pulp mill
 - Poor stripping efficiency
 - Fouling of stripper preheaters
 - Foaming in stripper column

Mist Elimination

- Possible causes for excessive entrainment
 - Pushed evaporation capacity
 - Not enough elimination capacity
 - Fouled, damaged or dislodged mist eliminators

- Retrofit to horizontal flow mist eliminators
 - Accommodate high vapor loadings
 - High removal efficiency: ~ 5-20 ppm Na$_2$O
Mist Eliminator Retrofit in LTV

Old centrifugal type New chevron type

Mist Eliminator Retrofit in FF

- UPPER VAPOR BARRIERS (3 SECTIONS)
- VANE BANK FRAMES (6 MODULES)
- LOWER VAPOR BARRIERS (3 SECTIONS)
Mist Eliminator Retrofit

- Upper and lower vapor barriers installed
- Mist eliminator frames installed
- Foul condensate drains

- One of six modules installed within the vapor dome.
Condensate Segregation

- Water reduction = Energy reduction = Cost savings
 - Annual cost for a typical bleached mill

$1.0 - 3.0 \text{ MM/ year}$

- MEEs are the major “water-treatment” plant to produce condensate suitable for re-use

Condensate Segregation

- Volatile components (Methanol & TRS)
 - Quickly stripped from the WBL in the first two stages of evaporation (typ. 5th & 6th effects)
 - Highest contamination found in condensate resulting from 5th and 6th effect vapors
 - ~ 75% of the volatile BOD
 - Most of the TRS compounds

- Keep cleaner condensate from MEEs front end away from this contaminated condensate
Condensate Segregation – Step One

- Remove 4th effect condensate and flash in external FT
 - Maintains overall economy
 - Flashing further removes volatile contaminants

- Methanol under 150 ppm (typ.), TRS at a few ppm
 - Suitable for re-use on the brownstock washers
Condensate Segregation – Step Two

- Principle
 - Contaminants being more volatile than water tend to condense later than water vapors
 - Condensing contaminated vapors in two stages – in series – effectively moves most of the contaminants into the second condensing stage
 - Fairly clean condensate produced out of the 1st stage
 - Very foul condensate collected from the 2nd stage

- Modify older LTVs by adding external heaters
Condensate Segregation - Step Two

- Modify existing condensers the same way

![Diagram of condenser with multiple stages and contaminant collection]

Condensate Segregation - Step Two

- Modern FF & Condensers
 - Two-stage condensing built-in
 - Baffling of the shell
 - Two condensing sections in series

- Slightly contaminated condensate collected in the 1st vapor pass
- Foul condensate in the 2nd pass
Condensate Segregation – Step Two

- Contaminated condensate
 - Methanol level typically ~ 400 ppm
 - Suitable for re-use in recausticizing

- Foul condensate
 - Methanol level often > 6,000 ppm
 - Requires stripping before re-use

Hybrid Systems FF / LTV

- FF unit integrated with LTVs
 - Used to gain capacity
 - FF designed for lower Delta-T
 - Some driving force is freed
 - Used to push other effects harder
 - Overall capacity gain for the set

- Other factors (SC, entrainment, etc.) may limit the actual capacity gained
Hybrid Systems FF / LTV

- LTV Conversion to FF
 - Bottom liquor box extension
 - New distribution device
 - New recirculation pump & piping
 - New vapor piping
 - Typically done to reduce steam pressure needed at the front end

- New FF as first effect provides better resistance to scale and greater turndown
Hybrid Systems FF / LTV

- Conversion from 5 to 6 effect operation
 - New FF body added to LTVs
 - Evaporation capacity gained: ~ 17%
 - Load on existing effects: ~ same
 - No additional steam or cooling water
 - Many conversion projects driven solely by energy savings, not capacity gained

Hybrid Systems FF / LTV

- FF body as 1st or 6th effect?
 - Heat transfer characteristics of the train
 - Where is the weak link?
 - Concentration profile changes across the train
 - Check materials
 - FF easily foam at low solids
 - LTV foul at higher solids
FC Concentrator Upgrade

- Utilities can help finance power savings projects
 - Quick, easy and reliable source of savings

- Ideal candidates
 - Existing FC concentrators and heavy liquor heaters
 - Retrofit with turbulence enhancers

Reynolds Enhanced Crystallizer (REX)

- Spiral inserts disrupt boundary layer at the tube wall
- Apparent Re in the turbulent region even at high liquor viscosities
- More efficient use of HP
 - High U coefficient
 - Lower tube velocities
Net Benefits of REX Upgrades

- Recirculation rate cut in half
- U Coefficient doubled
- Lower tube-side Delta-P
- 45-50% power savings

Conclusions

- MEEs total energy usage
 - Varies greatly from mill to mill
 - Age of the facility & capital invested over the years
 - Integration of ancillary equipment (stripping, etc.)
 - Type of evaporator (LTV, FF, etc.)
 - Environmental limits

- Different justifications at each mill
Conclusions

- Benchmarking
 - Critical to assess performance of your MEEs for energy consumption & costs against others
 - Identify MEE performance & energy use inefficiencies
 - Upgrade program developed & justification established

- Implementing such program
 - Significant improvement to the bottom line

$$$$$