

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Jo Ann Ratto

Greening the U.S. Army

June 26, 2008

• Greening the U.S. Army Why Green the Army? Executive Orders Financial Benefit Environmental Benefit

What is the Army doing to make it Green?

- Zero Footprint Camp
- Waste to Energy Converters
- Photovoltaics
- Fiberboard
- Shelters

Natick Soldier RD&E Center (NSRDEC)

Mission Areas

- Individual Protection
- Collective Protection
- Airdrop / Aerial Delivery
- DoD Combat Feeding
- Supporting Science and Technology
- Warrior Systems
 Technology Integration

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

DoD Combat Feeding

Combat Rations

RDECOR

- Field Food Service Equipment
- Combat Feeding Systems

• S&T Thrusts Areas:

- Energy & Equipment
- Food Safety / Biosensors
- Novel Preservation & Stabilization
- Novel Nutrient Delivery
- Revolutionary Packaging
- Logistics

Base Camp Waste Disposal

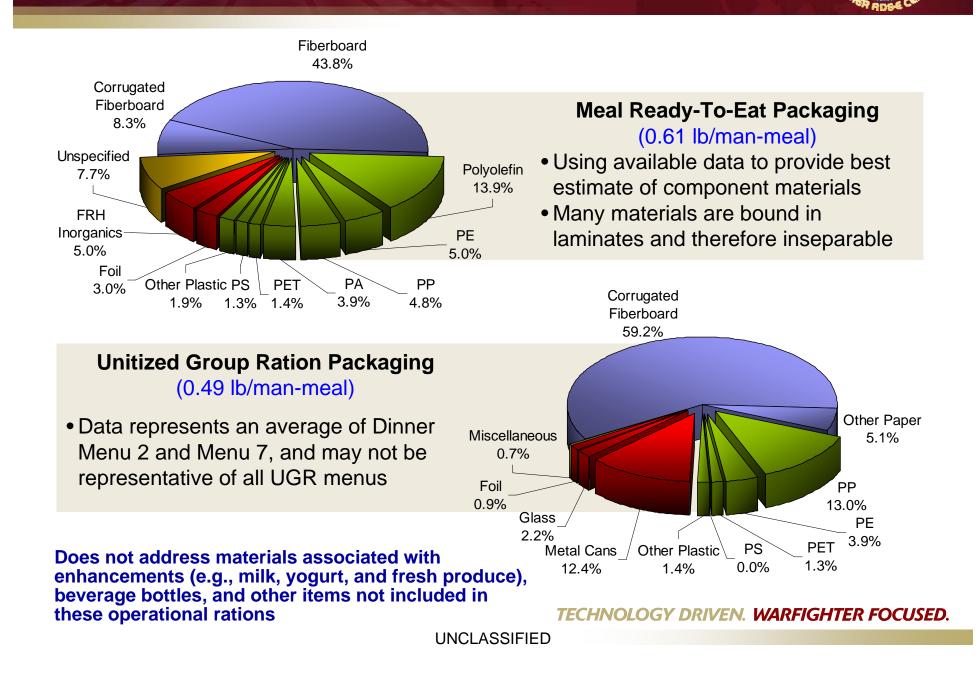
The unfortunate reality at base camps...

RDECOR

Open burn box with no emissions control

Energy wasted!

Example: Solid Waste Disposal at ASG Eagle Base (Bosnia)


Mounds of leftover partially burned trash

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Operational Ration Packaging

RDECO

★ Reduce Logistics Footprint ⇒ Save Dollars

☆ Reduce Safety & Health Risk ⇒ Optimize Personnel Availability

★ Minimize Environmental Risk ⇒ "Zero" Footprint

"Waste" isn't Waste ⇒ It's a Resource

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

The ZFC Impact

RDECO

Force Protection

Intelligence: Eliminates Enemy Intelligence Source Physical Security: Eliminates need for Civilian Access Health: Reduced Death Rates

<u>Environment</u>

Eliminates Compliance & Clean-Up Provides Enriched Soil for Soldier or Host Nation Use Reduce Greenhouse Gas Emissions Zero Footprint

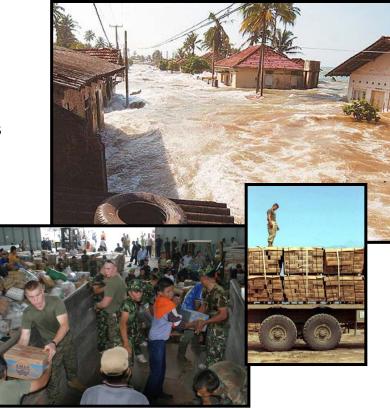
Logistics & Sustainment

Reallocation of Engineer Assets Water Requirements Reduced by up to 80% Power Generation Augmented by 30% Diesel Fuel Requirements Reduced by 30% Transportation:

> Supply Convoys Reduced Waste Convoys Eliminated

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Potential Applications



RDECOM

<u>Military</u>

Operation Iraqi Freedom Afghanistan Balkans Area of Operations Force Provider Modules Division Support Areas Temporary Ports

Humanitarian Relief Disaster Aid

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Exhaust

Managing the Waste

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

ZFC Integration: RDECOM "Thinking Back Inside the Box" En AUDIN **Supplies** Resources Generator Water **Exhaust** from Exhaust Gray **Gray Water Consumption Water to Camp** Water Plant Sludge / Black Water to Latrines **Black Water** Water Sludge Plant Soil **Food Garbage** Composter Ash Waste To Trash Energy Energy Converter **Metal &** Glass **Integration and Optimization** (10%) "Designer Trash"

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

ZFC-related Focus Areas

Energy Recovery & Storage Systems

- Photovoltaics
- Fuel Cells

RDEED

- Advanced "Batteries"
- Geothermal

• Thermally efficient structures

- Tent/shelter liners
- Protective covers

Energy efficient appliances

- LED lighting
- Thermo electric

• Several technologies available to eliminate solid waste

- Incineration

RDEHI

- Gasification
- Pyrolysis
- Steam Reformation
- Conversion to energy requires system engineering & configuration effort
 - Boiler/turbine configuration
 - Synthetic gas conversion to fuel generator

Potential research areas

- Ash reutilization or elimination
- Air emissions reutilization
- Fuel cells as the energy source

WEC — Waste to Energy Converter

• Objective:

RDEED

 Develop and demonstrate technologies that treat solid waste as a resource, producing useful energy while minimizing field waste

• Capability Provided:

- Onsite conversion of solid waste into electricity and highquality heat for field-feeding and organizational equipment
- Reduced logistics tail in terms of fuel consumed and trash backhauled

RDECOM Waste Stream Data Comparison

	Army Field Feeding System (Fort Campbell,	Force Provider Training Module (Fort Polk,	AF Bare Base*	ASG Eagle Base Camp	ASG Eagle Base Camp
	April 1995)	June 2000)	PSAB data)	(excluding wood)	(including wood)
Study Population	210	164	1182	3700	3700
Paper & Cardboard	45%	38%	53%	49%	12%
Plastic	8%	12%	26%	34%	8%
Food	14%	40%	2%	4%	1%
Misc	12%	7%	10%	8%	2%
Metal & Glass	21%	3%	6%	5%	1%
Wood	-	-	3%	-	76%
Per Capita (Ibs/person/day)	3.2	4.1	13.2	3.0	12.6
Fuel Potential	79%	97%	94%	95%	99%

* This data is estimated, and the methodology used was not specified.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

WEC Vision: A Paradigm Shift

- Waste disposal costs time & money
 - Expensive logistical burden
- Reliance on host nation support is problematic
 - Overwhelm local capabilities
 - Human health and environment
- Waste footprint usable by the enemy
 - Signature

RDECOM)

Force protection

VISION: Waste is Power

- Paradigm shift
 - Waste less a liability, more a resource
- Convert field waste into useful power and heat for field-feeding and organizational equipment
- Positive Impact
 - Reduced military waste footprint
 - More self-sufficient forces
 - Improved force protection

Energy Potential of Waste

RDECON

a single UGR dinner

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

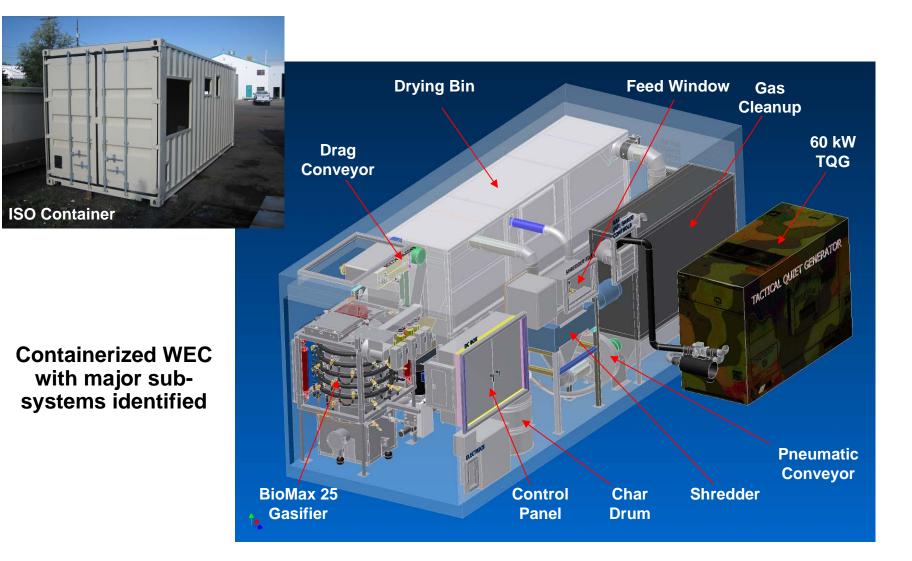
Downdraft Gasifier

• Approach: Stratified Downdraft Gasifier

BDEED

 an innovative design with electronic instrumentation and active air controls to optimize the process

Reduces dry feedstock to fuel gas and char/ash


- the clean producer gas can be used in an internal combustion engine
- BioMax® pre-commercial system converts woody biomass into electricity and heat
 - markets include small industrial, agroprocessing, and rural electrification

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Downdraft Gasifier

RDECOM

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Downdraft Gasifier WEC

Automatic Operation

RDECO

- Computer controlled
- Transports feedstock from shredder to drying bin to gasifier
- Adapts to feedstock and electrical load changes
- Identifies faults
- Alerts and instructs operator
- Logs data

- Operator Requirements
 - Minimal computer skills
 - Some mechanical aptitude
 - High school education
 - Example: BioMax® 15 operated by Ag students at North Park High School in Walden, CO
- Operator's Duties
 - Load the shredder
 - Respond to operator alerts
 - Remove sack of char from char drum
 - About daily
 - Perform routine maintenance
 - Weekly as required

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Travel Lighter, Stay Longer!

<u>Problem:</u> Current power sources are heavy, expendable and detectable, not directly integratable into Warrior Systems, and do not have sufficient density for extended missions.

Known – Photovoltaics (PV) convert "free" light energy into electricity with no noise, moving parts, fuel consumption or pollutant emissions.

Less known – PV technology has changed <u>significantly</u> over recent years... that technology now allows PV's to be flexible and lightweight!

·····, ···,

Today's PV's can provide many benefits to the military.....

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Shelter Integrated Flexible PV Power Shade

Application:

RDECO

- Solar shade w/ integral PV power, reduces solar load 80% 90%
- Small version provides 1 KW of PV power
 - Designed to fit over: MGPTS small, 16' TEMPER
- Medium version provides 2 KW of PV power
 - Designed to fit over MGPTS medium, 24' TEMPER
- Modular expandability

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Power Shade Easy field assembly

RDECON

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

RDECOM Shelter Integrated Flexible PV 2 kW Power Shade Image: Comparison of the state of the

Give them one prior supervised set-up, and 20 minutes later...

...these Soldiers are enjoying the reality of shade AND silent electrical power with no logistical fuel tail! **TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.**

"TEMPER fly and QUADrant"

Application:

RDECOR

- TEMPER PV fly is a "drop-in" replacement for existing tent fly
 - Provides ~750W of power
- •QUADrant is ¼ of a TEMPER fly
 - Provides ~ 200W of power
 - Modular expandability, flexible ground or frame mounted use.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Foldable PV units

Portable power in the field

- 5, 10, 20, 30 and 60 watts
- 12V and 24V DC output
- Easily deployed

RDECO

- Compact and lightweight (6oz for 5w unit)
- Daisy chain for modularity

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Roll-able PV Mats

Application:

RDEED

- Versatile PV power supply....Roll out anywhere for instant power
- Multiple sizes to match the need .3, .6, and 1.2 Amp units
- Stores in it's own pouch
- Rolls tight.. Rolls to under 5" diameter for even the largest unit
- Roll-able units with Desert tan and Olive drab substrate available

Technical Specifications:

	Operating Voltage (V)	Operating Current (Amps)	Weight (lbs./kg)	Rolled Dimenstions (in/mm)	Unrolled Dimensions (in/mm)
PowerFilm® R15-300	15.4	.3	.6 .29	11.5x4x3.75 292x101x92	11.5 x 21 292 x 531
PowerFilm® R15-600	15.4	.6	1 .46	11.5x4.25x4.25 292x108x108	
PowerFilm* R15-1200	15.4	1.2	1.9 .88	12x425x4.5 305x108x114	12 x 73 305 x 1858

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Flexible PV Charging Solution: AA battery charger

Specifications:

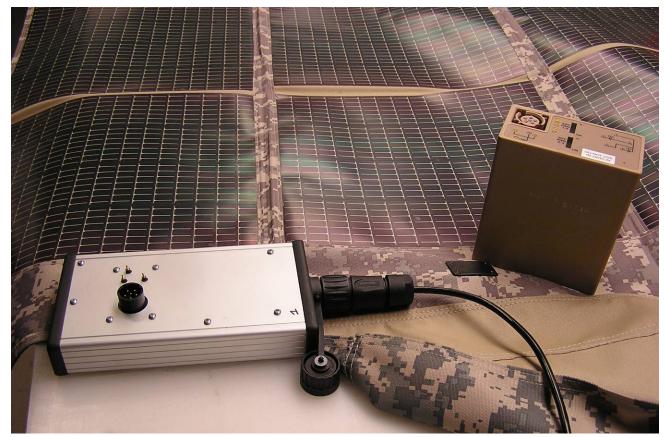
• Capacity:

RDECOR

- Two or Four NiMH or NiCAD AA batteries
- Weight (w/o batteries): ~ 3.4 oz

• Approx time to charge

- Full Sun: ~ 4 hours
- Partly cloudy: ~ 6 8 hours
- Overcast: ~ 16 hours



TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

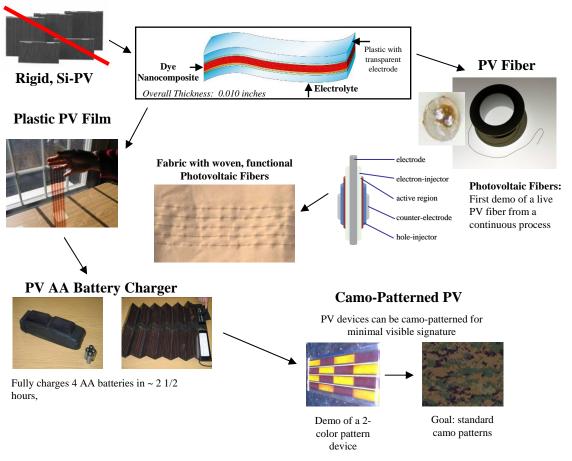
Flexible PV Charging Solution: BB2590 / BB390 battery charger

• 1st iteration design prototype shown

RDECOM

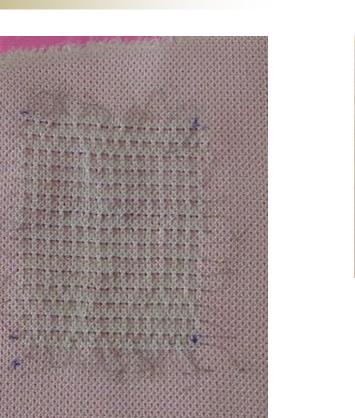
• New package & electronics ~ 1/4 size and >90% efficient!

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.


Next Generation Solar Cells for Lightweight, Conformal and Renewable Power

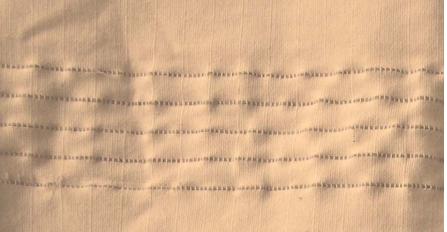
The core technology is based on very thin (< 3 sheets of paper thick) dye nanocomposite Photovoltaic (PV) coatings that are applied to flexible plastic films in a cost effective roll-to-roll manufacturing process.

Applications:


RDEED

- Battery Chargers: Portable (AAs, BB2590, etc.) and Stationary – kWs power from larger surface area structures (shelters, vehicles – manned and unmanned)
- Hybrid Power: Complement to generators
- Sensory Arrays: Minimize power re-supply for remote, distributed sensor arrays
- Modular Power: Provide Pockets of power, minimize wires/connects

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.


PV fibers in fabrics

Hand-woven

RDECOR

After conventional machine weaving, the PV fibers still functioned

Machine-woven

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Fiberboard - Problem Statement

Army, Air Force, and Marine Corps consume approximately 46.6 million operational rations each year generating 14,117 tons of packaging

RDEEDN

Meals Ready-To-Eat (MRE)/Unitized Group Ration (UGR) – 10,000 Tons of Fiberboard Annual Waste with Removal Cost at \$50/Ton = \$550,000 *2002 Procurement Statistics

New technologies producing lightweight biodegradable fiberboard are needed to reduce packaging waste and disposal costs

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Meal, Ready-to-Eat (MRE) Pallets and Cases

RDECOM

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Strategic Environmental Research & Development Program (SERDP) – Lightweight and compostable packaging

JSN 07-05 - Multi-Functional Secondary Packaging

Sustainable Technologies for Ration Packaging Systems (STRaPS) – FY12

RDFCOM Technical Objectives

Objectives:

 Produce new lightweight fiberboard materials, biodegradable polymer-coated fiberboard and paperboard that can be converted to a valuable byproduct, compost.

 Produce environmentally friendly materials that meet the operational and performance requirements of combat ration packaging.

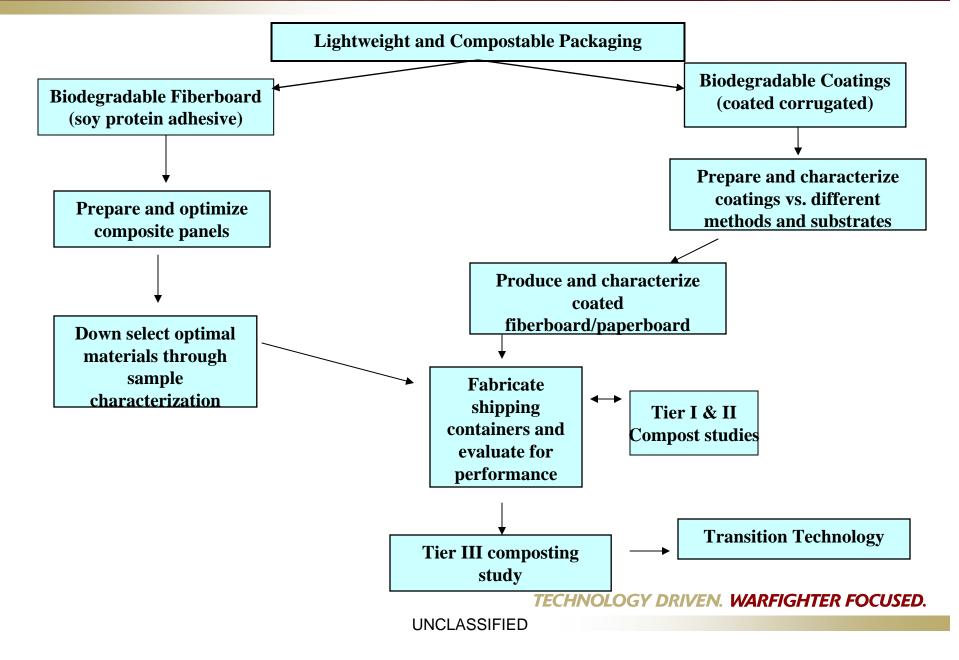
TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

MRE Food Component and Storage Shipping Containers

MRE MEAL

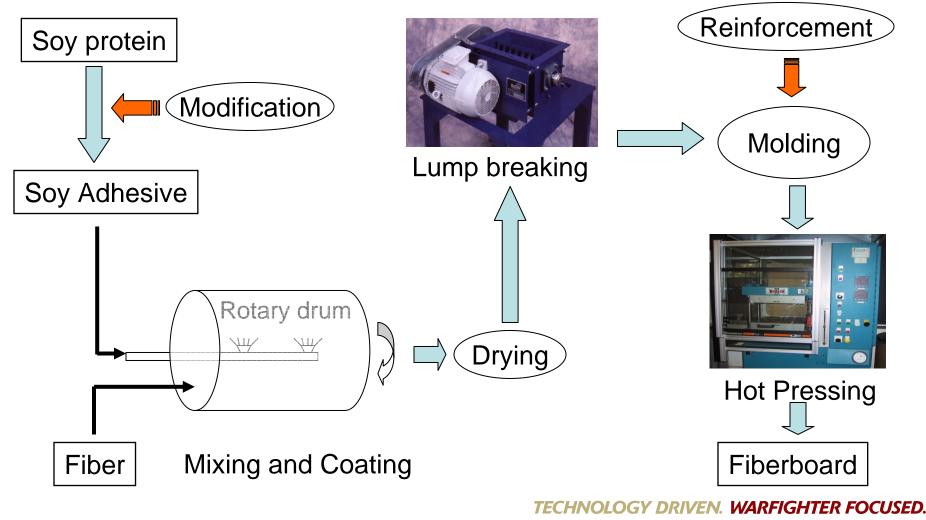
RDECOM

MRE CASES FOR SHIPMENT



UGR

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.


RDECOM Technical Approach

Soy Protein Fiberboard

RDECOM

Fiberboard preparation

Fiberboard Preparation

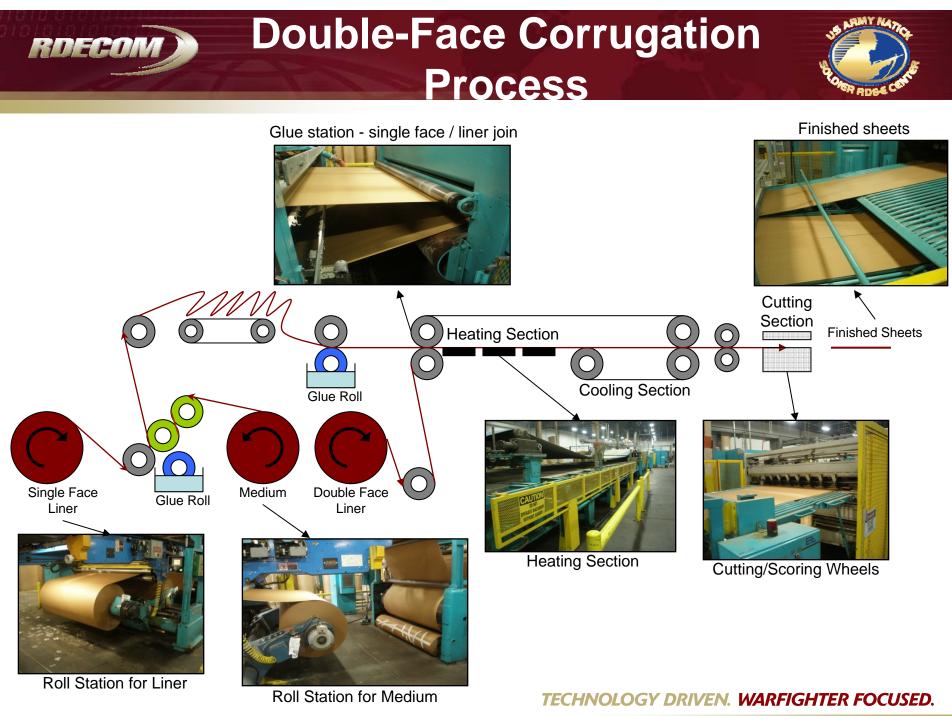
RDECOM

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Fabrication of Fiberboard

RDECOM)

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.



RDECOM

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

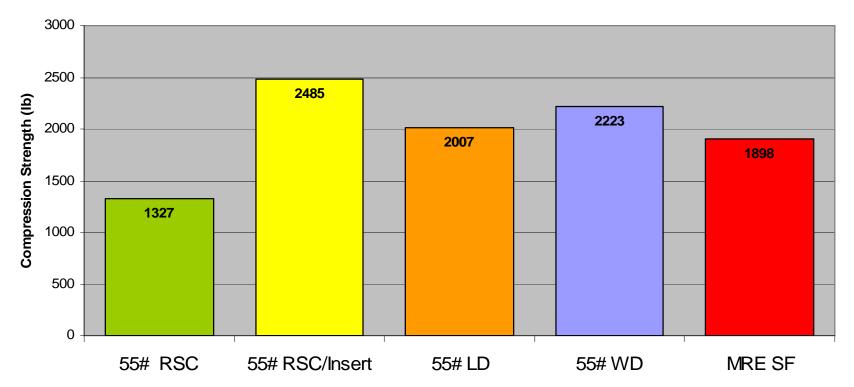
Container Samples

RSC WD with 12 MREs

RDECOM

MRE SF after compression

MRE SF during compression


RSC LD after compression

RSC WD after compression

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Load Chart MRE Filled

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Spray Test ASTM D951-99

Control MRE Containers

Conditions

Duration – 4 hours

Intensity - .8 GPM

Water Temp. - 72F

Bottom box of SF stack note stress at glued flaps TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Current MRE SF – no significant deflection after 4 hr spray test

RDECOM

Spray Test ASTM D951-99

Coated Corrugated Prototypes

RDECOM

Showed some deflection on bottom two boxes

Conditions

Duration – 4 hours Intensity - .8 GPM

Water Temp. - 72F

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

RDECOM

Conditions

Duration – 4 hours

Intensity - .8 GPM

Water Temp. - 72F

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Composting

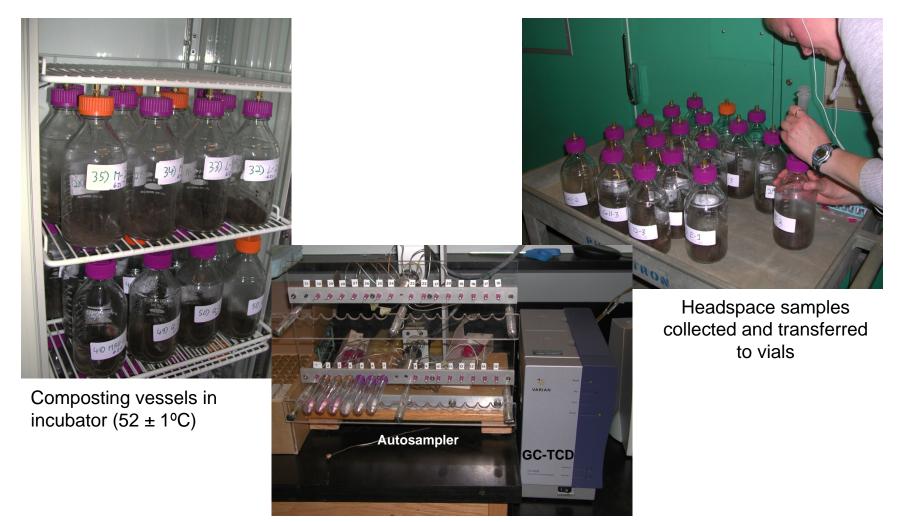
Composting Studies

BDEEL

- 1. Conduct biodegradation tests in compost (Tier I, Tier II, and Tier III)
- 2. Use fiberboard along with food waste / paper / wood chips etc. to prepare compost and test the quality of compost.

Conditions: C:N ratio, moisture, air filled pore space, oxygen, pH, temperature of compost

Tier I Testing: Mineralization studies


Respirometry

RNFCA

- In accordance with ASTM 5988
- Determines the environmental biodegradability of the test material
- Lab-scale test based on simulated windrow composting conditions
 - Measures the conversion of structural C to CO₂-C
- "Compostable" material yields 60% conversion of structural C to CO₂ within 180 days under standard test conditions

Tier I Testing: Mineralization studies

RDECOM

Gas samples analyzed using GC

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Percent Biodegradation at 180 days

0				
	Mineralization			
Test Material	ThCO _{2 (%)} Deviation (+/-)			
Cellulose powder (positive control)	75	5		
MRE Solid Fiberboard Container	86	11		
MRE Corrugated Liner	87	19		
Soy Protein Fiberboard	68	13		
Coated Corrugated Fiberboard	61	9		

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Tier II Testing: Weight Loss

RDECOM

Bench-scale (200 L) composter

Composter is turned once per hour; temperature & O_2 levels are monitored at set intervals

Compost is aerated (forced air system along central core) if temperature > 58° C or if O₂ concentration < 15%

Gas samples are analyzed using GC

Test samples are placed in litter bags and buried in the compost matrix

Tier II composting: Results


RDECOM)

Time (d)	Weight Loss (%)						
	V2S	V3C	MRE-liner	MRE-box	Coated Board	SF	
7	0.76	0.64	1.11	1.72	1.06	2.40	
14	4.84	3.39	1.50	8.57	7.56	8.83	
21	8.59	6.48	9.03	11.17	10.92	11.59	
28	12.11	9.38	10.09	12.91	18.43	17.04	
35	17.81	12.84	14.07	20.71	18.43	15.35	
42	18.91	14.13	16.45	24.03	17.71	15.30	

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

RDECOM

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Lightweight & Compostable

Focus Areas

- Compression Strength
- Bursting Strength
- Rough Handling

RDECOM

- Water/Moisture resistance
- Weight, Waste & Cube
- Transport/Storage
 - Material Handling/Use
 - Disposal

Benefits

- Weight Reduction

 3.6 million lbs per year!
- Material Reduction
 - 20%-40% savings in weight vs. MRE container
- Compostable
 Coatings, fiberboard, etc.
- Repulpable
 - New coating allow fiberboard to be processed at the mill
- Recyclable
 - Move containers out of the waste stream and into the recycling chain

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

RDFCOM Shelters - Command Post Programs

Modular Extendable Rigid Wall Shelter (MERWS)

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Army ISO Shelter Family

ISO 2 :1

Inside ISO 3 :1

ISO 3 :1

- Originally developed to facilitate housing and furniture industries, make use of forest and barnyard "waste" materials and consumer wastes
- Potential to replace "specialty" nomex honeycomb core with mass produced core material
 - Lower cost due to economies of scale
- Potential to set new standard for next generation of shelters
 - Low cost one time use structure
 - Medium term deployment (3-5 years)
 - Biodegradable
 - Reduced logistics burden
- Potential to reduce ISO Shelter cost
 - Lower manufacturing costs
 - Lower materials cost

Warfighter Recommended, Warfighter Tested, Warfighter Approved™

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- TAPPI, Karen Murray; IMERYS, Phil Jones
- NSRDEC, Steve Tucker, Melvin Jee, Jason Niedzwiecki, Christopher Thellen, Jeanne Lucciarini, Leigh Knowlton
- Strategic Environmental Research and Development Program (SERDP)
- Interstate Containers, Larry Nyquest, Keith Gray
- University of North Texas, Nandika D'Souza
- Kansas State University, Susan Sun, Xin Li
- University of Saskatchewan, Richard Farrell

Jo Ann Ratto

508-233-5315

Joann.ratto.ross@us.army.mil

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.