Adsorption of sulfur on the surface of silver nanoparticles stabilized with sago starch

Vladimir Djoković

“Vinča” Institute of Nuclear Sciences
P. O. Box. 522, 11001 Belgrade
Serbia

Thursday, 25. 06. 2009.
Biopolymer Nanocomposites

- Polymer nanocomposites combine advantageous properties of polymers with size-tunable optical, electronic, catalytic and other properties of metal and semiconductor nanoparticles.

- Polymers can not solely be regarded as good host materials; they can also be used to modify the surface and/or to control the growth of nanoparticles.

- Most of the methods for the preparation of high quality nanostructured metals and semiconductors produce nanoparticles that are non-polar and insoluble in aqueous solvents, thus, incompatible with biological systems.

- To address this problem, besides well known silanization method, several other methods have been suggested, such as modification of particle surfaces by using bifunctionalized ligands and amphiphilic polymers.

- Recently, biopolymers, such as chitosan, alginate and starch, have been introduced as capping agents and/or matrices for semiconductor, metal and semiconductor-semiconductor core shell nanoparticles.
Sago starch-Ag nanocomposite

Sago starch-\(\text{Ag}_2\text{S} \) nanocomposite

The band gap of bulk \(\text{Ag}_2\text{S} \) \(E_g = 1 \text{ eV} \)

Crystal structure of nano \(\text{Ag}_2\text{S} \) monoclinic
Optical properties of sago starch-Ag nanocomposite

<table>
<thead>
<tr>
<th>concentration</th>
<th>peak</th>
<th>(\lambda_c) (nm)</th>
<th>(\Delta\lambda) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1)</td>
<td>I</td>
<td>380</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>425</td>
<td>80</td>
</tr>
<tr>
<td>(c_2)</td>
<td>I</td>
<td>384</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>415</td>
<td>50</td>
</tr>
<tr>
<td>(c_3)</td>
<td>I</td>
<td>398</td>
<td>52</td>
</tr>
<tr>
<td>(c_4)</td>
<td>I</td>
<td>398</td>
<td>47</td>
</tr>
</tbody>
</table>
Theory of the optical behaviour of small metallic particles in a dielectric medium

Mie theory

\[
C_{\text{ext}}(\omega) = \frac{12\pi r^3 \varepsilon_m^{3/2} \omega}{c} \frac{\text{Im} \varepsilon(\omega)}{(\text{Re} \varepsilon(\omega) + 2\varepsilon_m)^2 + \text{Im} \varepsilon(\omega)}
\]

\[
\varepsilon(\omega) = \varepsilon_\infty - \frac{\omega_p^2}{\omega^2 + i\omega\Gamma} \times (1 + \delta n)
\]

\[
\omega_c = \frac{\omega_p}{\sqrt{\varepsilon_\infty + 2\varepsilon_m}}
\]

\[
\Gamma = \Gamma_0 + A \frac{v_f}{r}
\]

\[
\omega_p = \sqrt{\frac{N e^2}{m\varepsilon_0}} \rightarrow \sqrt{(N + \Delta N)e^2} = \omega_p \sqrt{1 + \frac{\Delta N}{N}} = \omega_p \sqrt{1 + \delta n}
\]

Mie theory for capped and core-shell metal particles

\[
C_{\text{ext}} = \frac{2\pi}{\varepsilon_m k^2} \sum_{n=1}^{\infty} (2n+1)\text{Re}(a_n + b_n)
\]

\[
\rho = \frac{r}{r + d}
\]

\[
a_n = \frac{\psi_n'(y) [\psi_n'(m_2 y) - A_n \chi_n'(m_2 y)] - m_2 \psi_n'(y) [\psi_n(m_2 y) - A_n \chi_n(m_2 y)]}{\xi_n'(y) [\psi_n'(m_2 y) - A_n \chi_n'(m_2 y)] - m_2 \xi_n'(y) [\psi_n(m_2 y) - A_n \chi_n(m_2 y)]}
\]

\[
b_n = \frac{m_2 \psi_n(y) [\psi_n'(m_2 y) - B_n \chi_n'(m_2 y)] - \psi_n'(y) [\psi_n(m_2 y) - B_n \chi_n(m_2 y)]}{m_2 \xi_n(y) [\psi_n'(m_2 y) - B_n \chi_n'(m_2 y)] - \xi_n'(y) [\psi_n(m_2 y) - B_n \chi_n(m_2 y)]}
\]
Maxwell-Garnett (M-G) effective medium theory

\[
\varepsilon_{av}(\omega) = \varepsilon_m \left(\frac{(1 + 2f)\varepsilon(\omega) + (1 - f)2\varepsilon_m}{(1 - f)\varepsilon(\omega) + (2 + f)\varepsilon_m} \right)
\]

\[
f = F \frac{r^3}{(r + s)^3}
\]

\[
\alpha_{av} = \frac{\omega \text{ Im}(\varepsilon_{av}(\omega))}{c n_{av}}
\]

\[
\omega_c = \frac{\omega_p}{\sqrt{\varepsilon_{\infty} + \frac{2 + f}{1 - f}\varepsilon_m}}
\]
Adsorption of sulfur on the surface of starch capped silver nanoparticles

\[
\delta n \approx 1.5\% \\
\rho \approx 0.9
\]

V Djoković et al.
Coll Surf B: Biointerf in press
TEM and HRTEM analysis of Ag@Ag$_2$S core-shell nanoparticles in sago starch
HAADF-STEM analysis
XPS analysis
• The recent results on the other nanocomposite structures that comprise biopolymers and inorganic nanoparticles.
Sago starch-CdS nanocomposite

The Brus equation:

\[
\Delta E = \frac{\hbar^2}{8R^2} \left(\frac{1}{m^*_e} + \frac{1}{m^*_h} \right) + \frac{e^2}{4\pi\varepsilon_0\varepsilon_r R}
\]

\[
d = 2R = 4.1 \text{ nm}
\]

T. Radhakrishnan et al.
Sago starch-CdSe nanocomposite
Sago starch-PbS nanocomposite

- Particle diameter D (nm):
 - $D_c = 9.2$ (3) nm
 - $\sigma_c = 3$ nm
 - $D_{\text{LN}} = 8.2$ nm
 - $\sigma_{\text{LN}} = 0.26$
 - $N = 100$

- Absorbance (a.u.):
 - Wavelength λ (nm)
 - Absorbance α (a.u.)

- X-ray diffraction peaks:
 - (111)
 - (200)
 - (220)
 - (311)
 - (222)
Colaborators

- P. Sreekumari Nair, University of Toronto
- T. Radhakrishnan, M.K. Georges, University of Toronto at Mississauga
- D. Božanić, R. Krsmanović, N. Bibić, “Vinča” Institute
Thank you for your attention!