Nanoparticles with Immobilized Biosensors for Bioactive Papers

Shunxing Su, Razvan Nutiu, Carlos D. M. Filipe, Yingfu Li, Robert Pelton

McMaster Centre for Pulp and Paper Research
Department of Chemical Engineering
McMaster University
1280 Main St. W., Hamilton, Ontario, Canada L8S 4L7
E-mail: peltonrh@mcmaster.ca
Imagine a Bioactive Paper Towel

- That would change color to tell us when our kitchen counter top was contaminated with dangerous bacteria.
- That would change color to warn us of the presence of anthrax spores.
Imagine a Bioactive Mask

Which will:

- *warn* the user of viral contamination.
- *capture* and *deactivate* the virus.
Imagine a Bioactive Water Filter

- Specifically bind small, soluble (i.e. difficult to remove) toxins
- Capture and kill all bacteria and virus.
- Warn user of contamination and when the cartridge must be changed.
a Network of Canadian Academics
~ 28 professors, 11 Universities, ~ 70 total students, PDFs and profs.
~ $2.5 million / year
 o 75% from Canadian Government’s Natural Science and Engineering Research Council (NSERC Network)
 o 25% cash from industrial consortium and Ontario Government.
Bioactive Paper - inexpensive paper products which detect and repel or deactivate waterborne and airborne pathogens.
Key Elements of **SENTINEL** Vision

- Paper giving **instant** visible indication of pathogens.
- **High speed** manufacture – coating or printing.
Bioactive Paper – a “Top” idea

- Described the Sentinel Bioactive paper concept as one of the top 70 in “The 7th Annual Year in Ideas”
“detect” pathogens

♦ Instant, visible indication of pathogens without instrumentation
♦ Technologies do not exist – this is the "killer application" for bioactive paper
♦ A large part of the SENTINEL research
Agents which specifically recognize (capture) a target

Sentinel researchers are developing four technologies in parallel

- Antibodies
- Bacteriophage
- DNA aptamers
- Enzymes
Applying Biodetection Agent to Paper

- To fibers before papermaking process
- Coating
- Printing on paper
Approach 1 – Simply Print a Solution

- Case 1 – no adhesion to paper surface
 - Example: DNA aptamers on cellulose
 - Exposure to target or developing solutions causes biodetection polymer to come off paper

- Case 2 – very strong adhesion with surface
 - Example: any anionic protein on wet strength resin coated paper
 - Enzymes and antibodies may denature on surface
Approach 2 – Cellulose Binding Domains

- Cellulase – family of enzymes which degrade cellulose
- Two parts – binding domain, catalytic domain (CBD)
- Sentinel researchers have genetically engineered CBD onto antibodies and phage
- Gives spontaneous binding to pure cellulose with controlled orientation
- What about surfaces coated with size, wet strength resin, retention aids, and/or fillers?
Approach 3 – Carrier Particles

- Attach biodetection molecules to carrier particles which can be formulated into ink
- The particles isolate the detectors from the paper surface chemistry
- Three Sentinel initiatives:
 - Porous silica particle *Brook/Brennan*
 - Microcapsules *Rochefort/Paice*
 - Microgels *Pelton/Filipe/Li/Hall*
Microgel Carrier Particles
Microgel Preparation

- Essentially a surfactant-free emulsion polymerization
 - Particles form because polymer is insoluble at high temperature
 - Electrostatically stabilized – sulfate from KPS.
 - Surfactant will give smaller particles

\[
\text{BA} \quad \rightarrow \quad \text{NIPAM}
\]

Water, 70°C

PNIPAM microgel
All Microgel Properties Depend Upon T

Below 33°C
- **Microgels**
- about 90% water
- transparent

Above 33°C
- latex particle
- about 20% water
- white
Swollen gel on TEM grid

Dehydrated Gel on TEM grid - cross section

Pelton and Chibante, Colloids and Surfaces 20, 247 (1986)
Microgels for Bioconjugation

- Require functional groups
- We chose carboxyl groups
- The pioneers:
 - Kawaguchi (1992) - first microgel protein interactions
 - Pichot & Elaissari - microgel with grafted oligo-DNA
Microgel Derivatization

- IgG or Aptamer still functions in solution after coupled onto microgel surface.
Microgel Swelling

Hydrodynamic Diameter (nm)

pH

APT-MG
SP-MG
IgG-MG
MG
RB-MG

~ 0.2 mg/m² streptavidin on microgel surface
Electrophoretic Mobility

SP-MG
APT-MG
RB-MG
IgG-MG
MG
DNA Aptamer Detecting ATP

Synthetic short DNA chains which fold to capture a specific target.
Schemes of the Set-up for Detection

Scheme 1
- Elution
- Filter paper
- Microgel
- Sample to be detected

Scheme 2
- Microgel
- Sample solution
“Spotted” Microgels on Filter Paper

- Microgel penetrates into filter paper about 1/3 of the thickness.
- Microgels do not move with elution
Inkjet Microgel Printing

- Dimatix Fujifilm Printer
Printing IgG-MG or APT-MG onto Filter Paper Surface

* IgG or Aptamer coupled on microgel can survive the printing process.
* Promising for making microgel-based bioinks.

Biomacromolecules 2008, 9, (3), 935-941.
Cationic Paper

- DNA aptamer is denatured when directly applied to cationic paper.
- Microgel supported aptamer functions on cationic paper.

<table>
<thead>
<tr>
<th>Aptamer Directly Applied to PAE Treated Paper</th>
<th>APT-MG on PAE Treated Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP GTP</td>
<td>ATP GTP</td>
</tr>
</tbody>
</table>

Aptamer

Microgel supported aptamer functions on cationic paper.
Summary

- Microgels are immobilized on filter paper
- Microgel supported antibodies and DNA aptamers retain activity on filter paper
- Microgel protects aptamer from cationic polymer impregnated wet strength paper
That’s All

Bioactivepaper.com
Papersci.mcmaster.ca
Microgel Superstar

- B.Eng, Queens
- Ph.D. McMaster 2006
- MIT PDF 2006-2008
- New Faculty at McMaster July 2008

Todd Hoare
Microgel Microstructure Models

![Graphs showing COOH concentration profiles for MAA-NIPAM, AA-NIPAM, and VAA-NIPAM models.](image)

- **MAA-NIPAM (Inverse Core-Shell Model)**
 - \(r_{\text{NIPAM}} = 0.20 \pm 0.08 \)
 - \(r_{\text{MAA}} = 2.8 \pm 0.4 \)

- **AA-NIPAM (Core-Shell Model)**
 - \(r_{\text{NIPAM}} = 0.57 \pm 0.07 \)
 - \(r_{\text{AA}} = 0.32 \pm 0.04 \)

- **VAA-NIPAM (Surface Model)**
 - \(r_{\text{NIPAM}} = 16.7 \)
 - \(r_{\text{VAA}} = 0.002 \approx 0 \)

Direct correlation between monomer reaction kinetics and resulting COOH distributions.

Chain Transfer with Vinylacetic Acid

- Slow propagation kinetics and chain transfer ability of VAA
 → expect chain end, surface-localization of functional groups
 A “one-step” method of making functionalized “hairy” microgels?
Detection of Specific Target by APT-MG (Scheme 2)

- APT-MG was mixed with the quencher before applying.
- Paper strips were eluted in ATP or GTP solution.
- Elution in ATP, specific target, enhanced the fluorescence intensity.
PAE Structure and Reactions

- Cationic, reactive water soluble polymer
- Reacts with carboxyl and amine groups
- Requires heat to drive reactions
- Produces positively charged paper

Microgel Swelling

- Gel swelling decreases at LCST.
- \(\sim 10 \) times decrease in volume
- Swelling sensitive to ionic strength
DNA Aptamer with Built-in Reporting

Structure-switching signaling

FDNA
FȘTCACTGACCTGGGGGGGAGTATTGCGGAGGAAGGT
Q-GTGACTGGGACCC 5'
QDNA

Target

Non-target

Protein or DNA oligos will Pass Through the Microgel on Paper Surface

- Proteins have molecular level contact with microgel
Detection of Antigen by IgG-MG (Scheme 2)

A: (1.6 µg/ml Ag-Per or Per)

B: (0.16 µg/ml Ag-Per or Per)
Detection of Antigen by IgG-MG (Scheme 1)

- Antigen was conjugated with peroxidase.
- Further elution in OPD, substrate for peroxidase, gave out color signals.
- Only the strip with antigen showed brown color