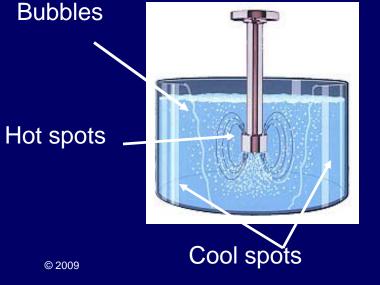
Energy Efficiency using Direct Steam Injection Presented to: PaperCon 09 June 2, 2009

Mr. David Degelau, ME

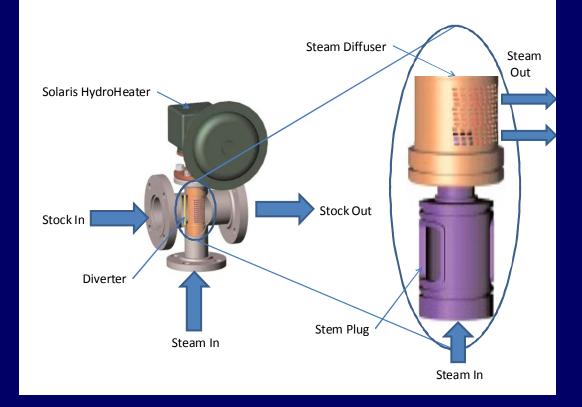
Table of Contents


- Summary of heat transfer methods
- Energy savings
- P&P applications for direct contact steam
- Specifying direct contact steam
- Conclusion/Discussion

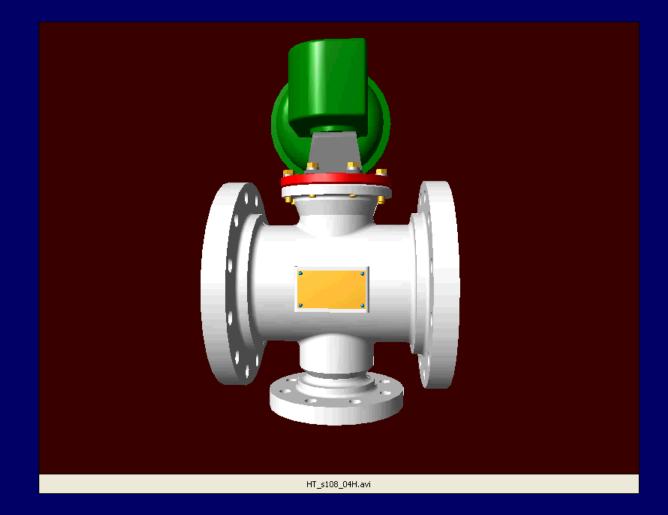
Heat Transfer Methods

Heat Exchangers

- Surface-contact transfer
- Difficult to control temperature
- High maintenance
- Energy losses significant


Spargers

- Uncontrolled forced steam
- Uneven heating
- Bubbles may damage equipment


Heat Transfer Methods

Direct Steam Injection (DSI)

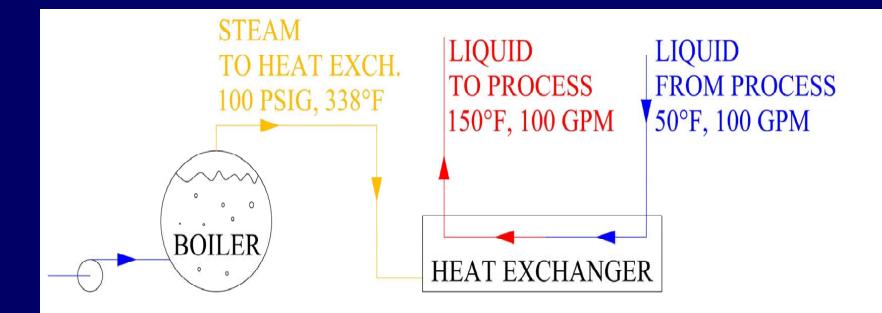
- Precisely controlled steam injection
- Sonic velocity
- Instant penetration and mixing
- Internal steam modulation keeps stock at precise temperature (± 1 ° F/ .5°C)

Cross Section – DSI Heater

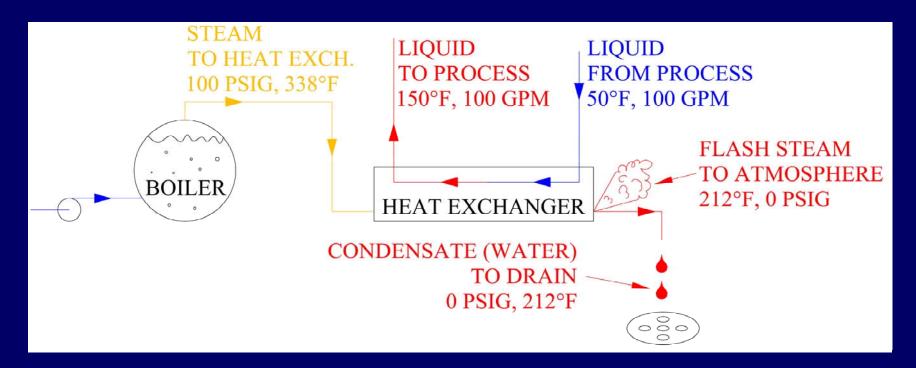
Energy Advantage

Reduced steam consumption

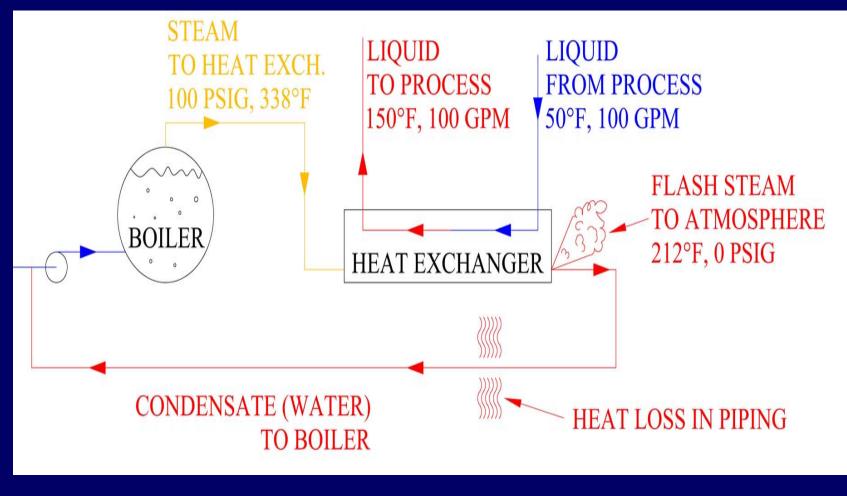
Uses all of latent and sensible heat energy
Faster attainment of set-point / start-up
Precise temperature control


Lower chemical use
Time saver

No scaling or fouling



LIQUID FROM PROCESS 50°F, 100 GPM


Condensate to drain

Condensate to drain

Condensate to drain

Condensate returned to boiler

Energy Usage Heat Exchanger vs. DSI

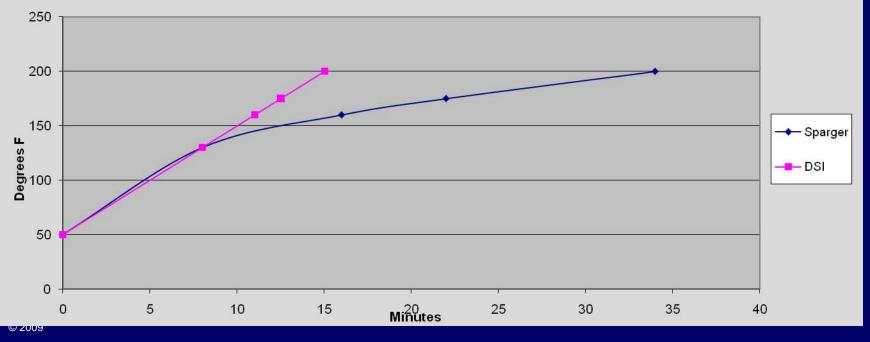
Comparison of a well designed Heat Exchanger system vs Internally Modulated Direct Steam Injection

Process Flow Rate
Temperature of incoming water
Required output temperature
Header Steam Pressure
Percent of Heat Exchanger Capacity
Boiler Efficiency
Percent of Condensate reclaimed to boiler
Percent of condensate heat lost during return
Condensate return line pressure
Boiler Makeup water temperature
Boiler Fuel Cost
Water treatment expense per 1000#/Steam
Average hours per day in use

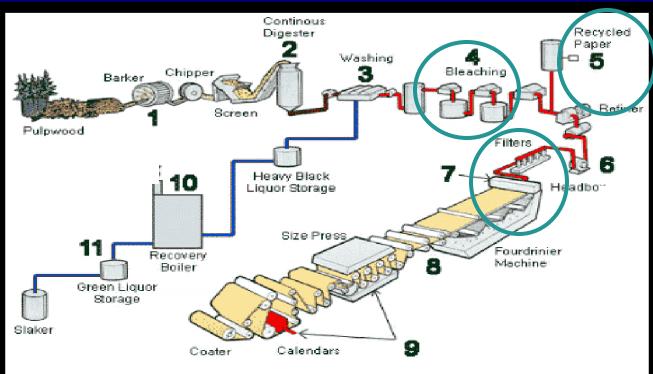
600	Gallons per minute
98	۴
150	°F
110	psig
80	%
80	%
90	%
5	%
20	psig
60	۴
12.00	\$/Mbtu
0.35	\$/1000#
24	Hours

	<u>Heat</u>	Exchanger		Internally modulated direct steam heater				
Required Energy Load		260364		260364	btu/min			
Steam Flow Required		285.5		231.3	Lb/min			
Energy Required at Boiler		354535		336457	btu/min			
Water Treatment cost	S	0.60	\$	4.86	per hour			
Cost per hour of use	S	255.87	\$	247.11	per hour			
Cost per day	S	6,140.76	\$	5,930.53	per day			
Cost per week	\$	42,985.34	\$	41,513.71	per week			
Cost per year	\$	2,235,237.47	\$	2,158,712.99	per year			
Estimated Annual Savings				76,524.48				
Estimated Investment				50,000.00				
Estimated ROI in Months	7.8							

Energy Usage – Sparger vs. DSI


•Reduced steam usage by 33%

- 932 lbs (422 Kg) with spargers
- 624 lbs (283 Kg) with DSI

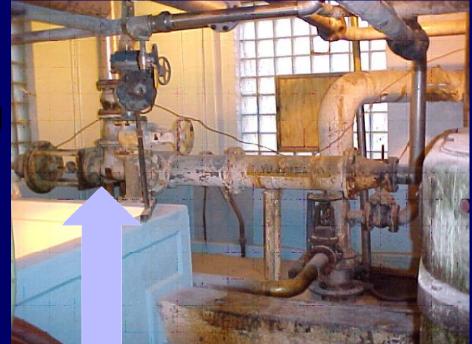

•Time Savings

Daily production increased by 32%

TANK TEMPERATURE vs. TIME

Case Studies

- Mill #1- Whitewater
- Mill #2 Bleaching
- Mill # 3 Green Liquor


Mill # 1 - Whitewater

- Replaced sparger
 - Was well designed system
- 50K gallon system
- Reduced steam usage

Mill #2 – Case Study Bleaching Process

- Replaced energy hog mechanical mixer
- Reduced steam flashing
- Sonic velocity steam eliminated need for mixer
- 20% energy cost savings

Mill #3 – Case Study Green Liquor Process

- Replaced Sparger
 - Needed to alleviate maintenance nightmare
 - Tanks suffering damage
- Reduced steam per hour -3918 lbs to 3218 lbs
- Annual savings \$70,000
 USD

Where can DSI be used?

Save energy in these applications using direct steam injection

Replaces Application Black liquor Sparging - heat exchanger Bleach washing Heat exchanger Bleaching water Heat exchanger Boiler feed water Heat exchanger Boil-out Sparging - heat exchanger Brown stock washing Heat exchanger Chlorate car unloading Heat exchanger Cooking & PVOH Batch cooking Filter backwash Heat exchanger Green liquor Sparging - heat exchanger Hydro-pulping Sparging Log de-icing Sparging Protein cooking Batch cooking Secondary fiber Sparging Hot water tank - heat exchangers - spargers Shower water Silo heating Sparging Batch cooking Starch dilution Stock heating Sparging - in-line auger Tank heating Sparging Wash station Heat exchangers - hot water tanks Whitewater heating Sparging

Process Conditions Needed to Properly Size Heater

- Fluid specific heat
- Fluid solids constant
- Presence of abrasive or corrosive products
- Automatic or manual temperature control
- Type of operation
 - Continuous
 - Intermittent
 - Variable

- Fluid density
- Fluid viscosity
- Flow rates
- Pipe size
- Inlet temperature
- Steam pressure

Summary - DSI Advantages

- Use to heat water miscible liquids/slurries
- Energy efficient
- Precise temperature
- Instant temperature
- Small footprint
- Less maintenance

- No condensate return needed
- May eliminate external mixers
- No hammering or vibration
- No scaling or fouling

Questions?

© 2009

Speaker

Mr. David Degelau <u>ddegelau@hydro-thermal.com</u> <u>www.hydro-thermal.com</u> •14 years R&D and process

 engineering various industries
 BSME and BS Mathematics – University of Wisconsin, Madison, WI

Hydro-Thermal Corporation . 400 Pilot Ct. . Waukesha, WI 53188 . +1 800.952-0121 info@hydro-thermal.com

Mill #? – Case Study Bleaching Process Chemicals

- Car unloading needed homogenous heating
- Raise chlorine dioxide temp by 46° F
- Decreased chemical usage by 10%
- ROI 4 mos.

DSI mass and Energy balance

- Ms+MI=Mt (Mass balnce)
- MI x HI + Ms + Hs=Mt x Ht (Energy balance)
- $(Mt Ms) \times HI + Ms \times Hs = Mt \times Ht$
- $Mt \times HI Ms \times HI + Ms \times Hs = Mt \times Ht$
- Ms x Hs x Ms x HI = Mt x Ht Mt x HI
- Ms x (Hs HI) = Mt x (Ht-HI)
- $Ms = Mt \times ((Ht-HI)/(Hs HI))$

DSI steam flow req'd

- $Ms = Mt \times ((Ht HI)/(Hs HI))$
- Ms = 600 x 8.34 x ((118.2 66.2)/(1192 66.2))
- Ms = 231 lbm/min

Energy req'd to produce steam

- 231 lbm/min Steam flow
- 60° F, H=28.1 btu/lbm Boiler feedwater
- 80% Boiler efficiency
- $Q = Ms \times (Hs Hb) \times 1/(h)$
- Q = 231 x (1192 28.1) x (1/0.8)
- Q = 336462 btu/min

Heat exchanger energy load

Q =Cp x MI x (Hhot – Hcold)
Q = 600 x 8.34 (118.2-66)
Q = 260364 btu/min

Heat exchanger % capacity

Log Mean Temperature Difference (LMTD) DTIm = (DT1 - DT2)/Ln(DT1/DT2) DT1 = 344.4 - 150 = 194.4 DT2 = 344.4 - 98 = 264.4 DTIm = (194.4 - 264.4)/Ln(194.4/264.4)DTIm = 219.4 °F

Heat exchanger % capacity

- Solve for Heat exchanger UA' @ 100% capacity:
- UA' = Q/LMTD
- UA'= 260208/219.4
- UA'= 1186 btu/°F min (UA for 100% capacity)
- Calculate UA for 80% capacity Heat exchanger:
- UA= UA'/h
- UA=1186/.8 = 1483 btu/°F min

Calculate LMTD @80% Capacity

• Q/UA = LMTD

• 260208/1483 = 175.5 °F

Calculate DT1, DT2

175.5 = (DT1 - DT2)/Ln(DT1/DT2)175.5 = (Ts - 150) - (Ts - 98)Ln ((Ts - 150)/(Ts - 98))

Ln ((Ts - 150)/(Ts - 98)) = -52/175.5 = -.2963

 $(Ts - 150)/(Ts - 98) = e^{-.2963} = .7436$

Calculate DT1, DT2

- (Ts 150)/(Ts 98) = .7436
- Ts − 150 = .7436 x (Ts − 98)
- Ts 150 = .7436 x Ts 72.86
- .2564 x Ts = 77.13
- $Ts = 301^{\circ}F$ (Steam temp in 80% cap HE)
- Saturation pressure for 301°F = 53 psig

Calculate HE steam consumption

- M = Q/(DT)
- M = 260208/909.7 = 286 lbm/min
- Condensate enthalpy @ 53psig:
 271 btu/lbm
- Condensate return line pressure:
 - 20 psig
- Condensate enthalpy @ 20 psig:
 - 226 btu/lbm

Calculate HE boiler load

Flash steam loss at trap:
Q=M x (DH)
Q = 286 x (271 - 226)
Q = 12786 btu/min
Mass of flash steam:
M = Q/DH
M = 12786/940.5 = 13.59 lbm/min

Calculate HE boiler load

- Calculate mass of remaining condensate:
 286 13.6 = 272.4 lbm/min
- Calculate boiler feedwater temp: (T_C-(T_C - 70) x K_{LOSS}) x K_{LEAK} + T_{BF} x (1-K_{LEAK})
- $(259 (259 70) \times .05) \times .9 + 60 \times (1 .9)$

Boiler feed temp = 230.6°F

Calculate HE boiler load

- Calculate energy req'd to generate HE steam:
- Q = M (DH)/h
- Q = 286 x (994.6)/.8
- Q = 355600 btu/min

Calculation Summary

DSI Energy load = 336462 btu/min
HE Energy load = 355600 btu/min
Difference: = 19138 btu/min
= 1.15 x 10⁶ btu/hr