Paper Machine Room Ventilation Guidelines

John Nielsen BE&K Engineering Co., LLC TAPPI PaperCon 09 St. Louis, MO June 3, 2009 Session 64

TIP 0404-50 Paper Machine Room Ventilation Guidelines

- Purpose of 2009 Revision
 - Earlier issues: Numerous methods \rightarrow wide range of flow rates
 - Establish base ventilation rates tied to machine parameters
- Scope
 - Guidelines for designing systems
 - Design criteria
 - Ventilation principles
 - Sizing or dimensioning exhaust, supply, and misc. systems
 - Overview of heat recovery options
 - Air surveys
 - Performance indicators

Perception

• Statements often made in discussing ventilation:

- Doesn't directly make paper
- Only for personnel comfort
- Added equipment to operate and maintain
- Increased energy consumption
- Increased exhaust didn't improve conditions

Purpose

- Replaces air removed as part of process, drying, and vacuum systems
- Provide a "controlled" environment for papermaking, personnel, and preservation of the building which includes containment and removal of:
 - Water vapor
 - Heat
 - Dust

Consequences – Fog

Consequences – Fog – Stratified flows

Paper Machine Room Ventilation Guidelines - 6

Consequences – Condensation

Consequences – Structural Failure

Consequences – Structural Failure

Basis of Guidelines – Design Criteria

• Temperature

Location	Minimum °F	Maximum above ambient °F
Ground floor	65	≤ 10
Operating floor – tending side, wet end	75	≤ 5
Operating floor – tending side, elsewhere	65	≤ 5
Operating floor – drive side	65	≤ 10
Mezzanine	-	≤ 20
Underside Roof	-	≤ 25

Basis of Guidelines – Design Criteria

Water vapor	
Location	Maximum above ambient Grains/IbDA
Ground floor	≤ 50
Operating floor	≤ 50
Mezzanine	≤ 100
Underside Roof	≤ 150

Basis of Guidelines – Design Criteria

- Dust
 - OSHA Requirements
 - Total airborne particles:

- 15 mg/m³
- Respirable particles, less than 10 µm:
- 5 mg/m³

Basis of Guidelines – Displacement Ventilation

Basis of Guidelines – Exhaust Systems

Exhaust systems

- Process
 - Former
 - Vacuum
 - Dryer section hood
 - Saveall
 - Pulper
- Building
 - Wet end false ceiling
 - Size press and coater false ceiling
 - Roof
 - Summer

Exhaust Systems – Former

- Purpose: Capture and contain water vapor carried with the wire and mist from showers
- Exhaust rate is a function of former type, machine speed, geometry, and stock temperature
- Higher exhaust rates
 - Fourdrinier w/top ply > Gap former > Fourdrinier
 - On machine silo > Off machine silo
 - Increased machine speeds
 - Higher stock temperatures

Exhaust Systems – Former

 Based on flow per trim width and speed with correction for temperature

- Flow Adjustment, *B* added exhaust to ensure in flow
- Flow Factors, *F* total pumped air flow

Exhaust Systems – Fourdrinier Air Flows

PaperCon (19

Exhaust Systems – Fourdrinier

Exhaust Systems – Top Wire

PaperCon (19)

Exhaust Systems – Gap Former

PaperCon (19)

Exhaust Systems – Wet End

Heat and water vapor transferred to room

Exhaust Systems – Wet End

- Purpose: Capture and contain water vapor originating from former and press top surfaces
- Exhaust rate is a function of surface area, machine speed, geometry, number of steam boxes, and stock temperature
- Based on flow per surface area with correction for temperature, and geometry

- Turbulent mass transfer rates across a flat plate
 - constant air and water temperatures
 - 100 grain/lbDA pickup ratio

Exhaust Systems – Wet End

PaperCon (19)

Exhaust Systems – Supplemental Roof Exhaust

- Purpose: Remove heat and water vapor not contained by other exhaust systems
- Exhaust rate is a function of:
 - Water vapor from open and uncontained sources:
 - False ceiling
 - Dryer section hood sheet break
 - Open tanks and chests
 - Heat gain from the following sources:
 - Paper product
 - Refiners
 - Pumps and fans
 - Motors
 - Tanks
 - Piping

Supplemental Roof Exhaust – Process Heat Gains

Source	Floor Level	Heat 10 ⁻³ Btu/ton
Refiners	Operating	58 – 88
Cleaners	Operating	1,000 Btu/h/ft ²
Stock Prep – Pumps & Piping	Ground	20
Vacuum System	Operating	37
Forming & Press – Pumping & Piping	Ground	75
Forming & Press – PM Drives	Operating	51.6
Main Dryer – PM Drives	Operating	18.5
Winder – PM Drives	Operating	44.4

Supplemental Roof Exhaust – Process Heat Gains

Refiner loads

•

- Based on paper grade
- 10% of total motor load
- Pumps and AC motors
 - 10% of motor nameplate
- PM drive motors
 - Calender, coater, reel, and winder 50% of motor load
 - All others 15% transferred into room

Exhaust Systems – Supplemental Roof Exhaust

Exhaust Systems – Supplemental Roof Exhaust

- Exhaust rate for water vapor sources
 - Minimum truss area exhaust
 - 25% of wet end false ceiling exhaust rate
 - 10% of dryer section hood exhaust rate
- Exhaust rate for heat sources
 - Minimum Winter: 25°F temperature differential
 - Summer: 10°F temperature differential for ground floor heat loads

٠

Supply Systems – Fog

What role do supply systems have in eliminating fog?

Basis of Guidelines – Supply Systems

- Exhaust and make-up air systems are required to prevent fog and condensation:
 - Increase humidity load = Condensation
 - Decrease temperature = Condensation
- Key is to prevent uncontrolled air infiltration:
 - Building air balance of 90-to-105% exhaust mass flow rate
 - Proper air distribution
- Supply air to operating areas
 - Displace heat and vapor

Basis of Guidelines – Miscellaneous Systems

- Pocket Ventilation and Hood Make-up
 - Hood Balance: 60-to70% of hood exhaust mass flow
 - Source: mezzanine
- Roof Supply
 - Required flow rate:
 - Roof heat loss (R-value)
 - Humidity load
 - Minimum of R18 (ft²-°F-hr/Btu) recommended
 - Wet end: 1.5 cfm/ft²
- Trim Systems
 - 70-to-80% of air should be extracted before entering pulper

System Performance

- 1. Condensation or Corrosion?
- 2. Water vapor containment?
- 3. Cold weather operation?
- 4. Dryer hoods spillage?
- 5. Building air pressure?
- 6. Cold spots or hot spots?
- 7. Temperature and humidity levels?
- 8. Energy consumption?

PaperCon (19)

Air System Surveys

- Purpose
 - Identify root causes
 - Establish a benchmark for future improvement
- Scope
 - Condition of equipment
 - Exhaust and supply airflows
 - Compare to rated performance
 - Building air balance
 - Exhaust system effectiveness
 - Dryer section hood
 - Airflow paths
 - Temperature and humidity distribution
 - Control strategy
 - Performance indices

Performance Indices – Overall Exhaust Rate

Exhaust air compared to production rate

Total Winter Exhaust (ft³ or m³/min)Production Rate(lb or kg/min)

Paper Grade	ft³/lb paper	m³/kg paper
Bleached Board	545 - 645	36.4 - 43.1
Corrugating Medium	375 – 545	25.0 - 36.4
Fine	530 - 630	35.4 – 42.1
Linerboard	375 – 575	25.0 - 39.4

Performance Indices – Wet End Exhaust

Flow rate

Wet End Exhaust $(scfm or m^3/min)$

Former + Press Area (ft^2 or m^2)

Temperature and Humidity

Roof Exhaust DB – *Operating Floor DB* $< 25^{\circ}$ F

 $Dry Bulb - Dew Point > 5^{\circ} F$

Humidity Ratio Pick up < 150 grains $H_2O/lbDA$

Performance Indices – Building Make-up

Air Balance

- 90-to-105% of Exhaust
- 50% of wet end
- Air Distribution (%)

Floor Level	Total	Tending Side	Drive Side
Mezzanine	0 – 5	-	0 – 5
Operating	70 - 80	50 - 60	10 – 20
Ground	20 – 30	10 – 20	5 – 10

Performance Indices – Maintenance

Equipment Performance

 $\frac{Measured \ Exhaust + Supply \ Flows \ \left(cfm \ or \ m^{3}/min\right)}{Rated \ Exhaust + Supply \ Flows \ \left(cfm \ or \ m^{3}/min\right)}$

- − Excellent \ge 90%
- Good ≥ 75%
- Poor < 75%

Summary

- Room ventilation is a necessary component of papermaking with serious consequences when ignored.
- TIP 0404-50 provides a starting point for ventilation design based on heat and water vapor loads.
- Performance indices should be tied to machine parameters.

