

Basic Urea-Formaldehyde Resin Chemistry

Zuzana Salkova

Building & Industrial Mat Spring Meeting

Savannah 2010

- UF Resin Definition, Raw Materials, Reactions
- Typical Resin Requirements and Applications
- Process Matrix in Nonwovens
- Resin Modifications, Cure Speed, Flexibility, Binder Allocation
- UF Resin Aging, Stability and Emissions

- Urea-Formaldehyde Resin (UF) is a class of synthetic resin obtained by chemical combination of urea and formaldehyde
- UF is a type of thermosetting adhesives:
 - » Polymerizes to a permanently solid and infusible state upon the application of heat
 - » Acid curing
 - » Good water tolerance
 - » High cross-linking ability
 - » High degree of versatility
 - » Inexpensive
 - » Used in a wide variety of applications

- Formaldehyde ⇒ Gas ⇒ 37- 56% solution
 - Natural gas (methane CH₄) ⇒ Methanol (CH₃OH)
 - Methanol ⇒ Formaldehyde (CH₂O)
- Urea white crystalline powder, prills
 - Natural gas ⇒ Ammonia (NH₃)
 - Ammonia (NH₃) + Carbon Dioxide (CO₂) ⇒ Urea (CH₄N₂O)

Two Major Stages in Urea -Formaldehyde Reaction:

1. Methylolation (Electrophilic Substitution)

- Initial reaction from mixing urea with formaldehyde
- First step in the resin manufacturing process
- <u>Exothermic</u> part of the resin manufacturing proces
- Not much MW or viscosity build

2. Condensation

- Secondary reaction from mixing urea with formaldehyde
- MW and viscosity build during this stage
- Water is lost with the formation of ether or methylene linkages
- Ether linkages are more water soluble, methylene linkages are not

UF – Reaction Stages

- The higher MW, the lower resin water dilutability

6/1/2010

6/1/2010

Condensation

Condensation

Monomer	Dimer	Oligomer	Polymer
A compound that can undergo polymerization	A chemical compound formed by the union of two molecules of a monomer	A polymer intermediate containing relatively few structural units.	A chemical compound Formed by polymerization And consisting essentially Of repeating Structural units.

6/1/2010

11

UF Applications

- UF resins are designed for the underlying application, and usually for a specific customer
- Majority of UF is used in wood applications composites, particleboards, etc.
- Big volume is also used in glass mat / nonwovens production. Resin could be used:
 - Alone
 - As a major component of a binder system
 - As a minor component/cross linker in the binder with thermoplastic resins for specialty applications

- Chemical binders are essential raw materials for non-wovens added to the web already formed or to the batt of fibers in forming stage.
- Functions of a binder:
 - Primary to hold fibers in pre-determined form
 - Secondary to improve web properties

6/1/2010

• Substrate

• Binder

• Interactions between substrate and binder

6/1/2010

Typical Resin Requirements

- Stability and adequate shelf life
- A wide operating window
- Tack characteristic associated with the plant and process conditions
- Cure speed appropriate for the process
- Targeted physical properties tensile, tear (flexibility / rigidity)
- High water dilutability
- Emissions level and type
- Compatibility with process water
- Compatibility with additives latex, defoamer, etc.
- Low cost

The binder is selected for defined application based on different aspects:

- Cure speed
- Physical attractive forces between polymer chains (e.g. reaction and/or compatibility with process additives)
- Chemical crosslinking
- Film formation
- Wetting ability
- Binder allocation

Factors Affecting Cure Speed

- 1. Molar Ratio
 - MR range in UF is 0.6 2.0
 - The higher MR, the faster cure
 - The higher MR, the higher emissions
- 2. pH
 - Resin buffer capacity
 - Catalyst system
 - Additives in the system e.g. latexes
- 3. Molecular size
 - In general, larger molecules, faster cure
 - Size of molecules has impact on viscosity
- 4. Additives

The main factors:

- 1. Formation of ether and methylene linkages (MR, pH, T)
 - ether linkages clear resin –CH₂– O–CH₂–
 - methylene linkages opaque — CH₂—
- 2. Used additives
- 3. Cooking time

Resin Flexibility and Rigidity

Major factors affecting resin flexibility / rigidity

• *MR*

- Cross-linkers
- *pH*
- Additives

Compatibility with Latex

UF chemist can make resin more compatible with latex by adjusting:

• Resin's Molecular Weight

• *MR*

- Selecting components and additives
- Designing the right buffer capacity of the resin to match or enhance the latex properties

• An even binder coverage over the whole fiber

OR

• The binder concentrated at the fiber cross-points

6/1/2010

Different resins composition, different wetting properties

Effects of UF Resin Aging

- Aging mechanism of U-F resins depend on the
 - Final Formaldehyde/Urea molar ratio,
 - Storage pH
 - Free urea in the resin
- Aging of U-F resins involve
 - Changes in resin structure
 - Initial increase in linear methylol groups
 - Subsequent decrease in linear methylol groups
 - Corresponding increase in linear methylene groups
 - Minor changes in branched methylol and methylene groups
 - Decrease in free urea
 - Increase in bulk viscosity
 - Decrease in absolute molecular weight
 - Decrease in cure speed
 - Decrease in ultimate bond strength

Functional Group Changes upon aging

6/1/2010

Aging vs. Cure Speed

lacksquare

- Although bulk viscosity is an important parameter used to monitor process ability of the resin, it does not provide a measure of resin performance upon aging
- The increase in bulk viscosity as resins age probably results from associative forces such as hydrogen bonding.
- Decrease in cure speed is related to decrease in molecular weight and methylol content rather than an increase in methylene content.

6/1/2010

- Water
- Formaldehyde
- Methanol
- Low molecular weight compounds

Ammonia modified UF resin at >400°C:

- Decomposition products of UF part: CH2O, HCl, HCN, COx, SOx, NOx, NaxOx, sodium carbonate & other organic compounds
- Ammonia-flammable, will flash off
- Low flashpoint amines will flash off with heat with the presence of characteristic ammonia odor, decomposition products include COx, NOx

Acknowledgements

I would like to thank Teong Tan, Mark Anderson and Reggie Mbachu for their help and valuable advices

Building & Construction

A business group of Dow Advanced Materials Division

Understanding Latex Binders

JEAN M. BRADY

MAY 21, 2010

- What is a Latex Binder?
- Designing a Latex Binder
- Nonwoven Performance

Latex in Glass Mat Products -

3 distinct functions

1. <u>Additives</u> to UF (Roofing mat, up to 12wt%)

- 2. <u>Sole</u> Binders (Specialty mat)
- 3. Coatings

Latex as Glass Mat Binder (x500)

Latex Binders

Water Borne

<u>Versatile</u>
 e.g. UF Modifier <u>or</u> Sole Binder <u>or</u> Coating

 <u>Tailor</u> properties: Flexibility Hydrophobicity UV, Solvent resistance

Latex made by Emulsion Polymerization:

- Polymerization occurs in each particle monomer migrates through H2O to particle (100-1000 nm diameter)
- Polymers (& most monomers) are <u>NOT</u> water soluble.

 Polymer particles are stabilized by surfactants & colloids

Emulsion Polymerization Schematic

Viscosity vs. Molecular Weight Water soluble Polymer vs. Latex

The Life of a Latex Particle...

- Formation & Growth of Polymer Particle variable composition, Mw, particle size
- Particles (wet) deposited onto substrate curtain coater, spray, roll coat

 Film Formation Process: Individual particles → Coalesced polymer film *Coalescents? Heat? Time?*

Dried Latex v. Water Soluble Polymer

Latex

all and the

Aquaset 600

Nonwoven Performance:

- Tensile Strength (rigidity)
- Tear Strength
- "Elasticity" (extensability)
- Hand or "feel"
- Hydrophobicity

Composition Guidelines

- Acrylics (BA, EA, EHA, MMA) for UV resistance.
 - MMA exceptional.

- EHA for water resistance.
- <u>Styrene</u> (St) for Water/alkalai Resistance (hydrophobic)
 Degrades over extended exposure to UV.
- Acrylonitrile (AN) for Solvent Resistance (hydrophillic)
 Discolors under UV (unsaturation).
 - Vinyl Acetate (VA) Low Cost
 - Hydrolyzes
 - Degrades under UV

Acrylates

Ethyl

R: $C - OC_2H_5$ \mathbf{O} Η Н C = C $C - OC_2H_5$ Η н

Acrylate

Methacrylates

H: CH_3 R: $C-O-CH_3$

Methyl Methacrylate $\begin{array}{ccc}
H & CH_{3} \\
| & | \\
C = C \\
| & | \\
H & C - OCH_{3} \\
\| \\
O \end{array}$

Acrylic Copolymer

Ethyl Acrylate/Methyl Methacrylate Copolymer

<u>Rigidity:</u> affected by Tg Tg = f(monomer choice, crosslinking)

Temperature

P.M. Lesko and P.R. Sperry, Emulsion Polymerization and Emulsion Polymers, P.A. Lovell and M.S. El-Aasser (Eds), John Wiley and Sons, p 641,1997.

G'(rubbery plateau) ~ 1/Me ~ Crosslink density

Monomer Choice – Guidelines

Hydrophobicity independent of Rigidity

<u>Monomer</u>		<u>Tg</u> (°C)
2-EHA	Most Hydrophobic	- 85
Styrene		+ 105
Butyl Acrylate		- 52
Methyl Methacrylat	e	+ 105
Ethyl Acrylate		- 21
Methyl Acrylate		+ 8
Acrylonitrile		+ 130
Vinyl Acetate	•	+ 29
Acrylic Acid	Most Hydrophilic	+ 103

Crosslinking Chemistry #1: Amides

Acrylamide (AM)

N-Methylol Acrylamide (NMA)

Acid/Heat-catalyzed Crosslinking → methylene bridge

Crosslinking Chemistry #2: Acid/Polyol

ОН

0

Ester Crosslinks + H₂O CH₂O-free

Nonwoven Performance:

- Tensile Strength (rigidity)
- Tear Strength
- "Elasticity" (extensability)
- Hand or "feel"
- Hydrophobicity

Tensile Strength: Latex-Modified UF

Tear Strength: Latex-Modified UF

Crosslinked Latex (sole binder):

High strength & high temperature flexibility

17% LOI on glass mat, cured 2min/200C (no pre-dry)

THANK YOU

Jean Brady The Dow Chemical Company Spring House, PA 19477 215-619-5438