Basic Urea-Formaldehyde Resin Chemistry

Zuzana Salkova

Building & Industrial Mat Spring Meeting

Savannah 2010
Outline

- UF Resin Definition, Raw Materials, Reactions
- Typical Resin Requirements and Applications
- Process Matrix in Nonwovens
- Resin Modifications, Cure Speed, Flexibility, Binder Allocation
- UF Resin Aging, Stability and Emissions
UF Resin Definition

- **Urea-Formaldehyde Resin (UF)** is a class of synthetic resin obtained by chemical combination of urea and formaldehyde.
- **UF** is a type of **thermosetting adhesives:**
 - Polymerizes to a permanently solid and infusible state upon the application of heat
 - Acid curing
 - Good water tolerance
 - High cross-linking ability
 - High degree of versatility
 - Inexpensive
 - Used in a wide variety of applications
• **Formaldehyde** ⇔ **Gas** ⇔ **37- 56% solution**
 - **Natural gas** (methane – **CH**₄) ⇔ **Methanol** (**CH₃OH**)
 - **Methanol** ⇔ **Formaldehyde** (**CH₂O**)

• **Urea** – white crystalline powder, prills
 - **Natural gas** ⇔ **Ammonia** (**NH₃**)
 - **Ammonia** (**NH₃**) + **Carbon Dioxide** (**CO₂**) ⇔ **Urea** (**CH₄N₂O**)

\[\text{H}_2\text{N}\text{C} = \text{NH}_2\]
Two Major Stages in Urea - Formaldehyde Reaction:

1. **Methyololation (Electrophilic Substitution)**
 - Initial reaction from mixing urea with formaldehyde
 - First step in the resin manufacturing process
 - *Exothermic* part of the resin manufacturing process
 - Not much MW or viscosity build

2. **Condensation**
 - Secondary reaction from mixing urea with formaldehyde
 - MW and viscosity build during this stage
 - Water is lost with the formation of ether or methylene linkages
 - Ether linkages are more water soluble, methylene linkages are not
 - The higher MW, the lower resin water dilutability
Methylolation

\[
\begin{align*}
\text{CO} & + \text{CH}_2\text{O} \xrightarrow{\text{H}^+} \text{CO} \\
\text{NH}_2 & \quad \text{NH}_2 \\
\text{NH}_2 & \quad \text{CH}_2\text{OH} \\
\text{NH} & \quad \text{CH}_2\text{OH} \\
\text{CO} & \quad \text{NH} \\
\text{NH} & \quad \text{CH}_2\text{OH} \\
\text{NH} & \quad \text{CH}_2\text{OH} \\
\text{CO} & \quad \text{N} \\
\text{N} & \quad \text{CH}_2\text{OH} \\
\end{align*}
\]

Formation of mono-, di- and trimethylolureas
Condensation of methylolureas

Condensation:

\[
\text{urea} \xrightarrow{\text{CH}_2\text{O}} \text{mmu} \xrightarrow{\text{CH}_2\text{O}} \text{dmu}
\]

Condensation of methylolureas:

\[
\text{mmu} + \text{mmu} \rightarrow \text{mdu}
\]

Ether Linkage:

\[
\text{ether of methylolureas}
\]

6/1/2010
Condensation

trimethylolurea + mmu → Methylene Linkage → branched resin polymer

- H₂O
- CH₂O
A chemical compound formed by polymerization and consisting essentially of repeating structural units.

<table>
<thead>
<tr>
<th>Monomer</th>
<th>Dimer</th>
<th>Oligomer</th>
<th>Polymer</th>
</tr>
</thead>
<tbody>
<tr>
<td>A compound that can undergo polymerization</td>
<td>A chemical compound formed by the union of two molecules of a monomer</td>
<td>A polymer intermediate containing relatively few structural units.</td>
<td>A chemical compound formed by polymerization and consisting essentially of repeating structural units.</td>
</tr>
</tbody>
</table>
Factors Effecting Resin Characteristics

- Resin Technology / Composition
- Temperature
- pH
- Molar Ratio
- Viscosity (Advancement and Solids)
- Additives
- Limit on Free Formaldehyde
• **UF resins are designed for the underlying application, and usually for a specific customer**

• **Majority of UF is used in wood applications - composites, particleboards, etc.**

• **Big volume is also used in glass mat / nonwovens production. Resin could be used:**
 - Alone
 - As a major component of a binder system
 - As a minor component/cross linker in the binder with thermoplastic resins for specialty applications
• **Chemical binders** are essential raw materials for non-wovens added to the web already formed or to the batt of fibers in forming stage.

• **Functions of a binder:**
 • **Primary** – to hold fibers in pre-determined form
 • **Secondary** – to improve web properties
Glass fiber produced in various grades, diameters, lengths w/wt sizing

Type of white water system – HEC, PAA, AO and additional additives

UF Resin

Latex – SBR, SBA, Acrylics, VA, etc.

Chemical Binder

Process
Factors Impacting the Product Strength

- **Substrate**

- **Binder**

- **Interactions between substrate and binder**
- Stability and adequate shelf life
- A wide operating window
- Tack characteristic associated with the plant and process conditions
- Cure speed appropriate for the process
- Targeted physical properties – tensile, tear (flexibility / rigidity)
- High water dilutability
- Emissions – level and type
- Compatibility with process water
- Compatibility with additives – latex, defoamer, etc.
- Low cost
The binder is selected for defined application based on different aspects:

- Cure speed
- Physical attractive forces between polymer chains (e.g. reaction and/or compatibility with process additives)
- Chemical crosslinking
- Film formation
- Wetting ability
- Binder allocation
1. **Molar Ratio**
 - MR range in UF is 0.6 – 2.0
 - The higher MR, the faster cure
 - The higher MR, the higher emissions

2. **pH**
 - Resin buffer capacity
 - Catalyst system
 - Additives in the system – e.g. latexes

3. **Molecular size**
 - In general, larger molecules, faster cure
 - Size of molecules has impact on viscosity

4. **Additives**
The main factors:

1. Formation of ether and methylene linkages (MR, pH, T)
 - ether linkages – clear resin
 \[\text{CH}_2 – \text{O} – \text{CH}_2 \]
 - methylene linkages – opaque
 \[\text{CH}_2 \]

2. Used additives
3. Cooking time
Major factors affecting resin flexibility / rigidity

- MR
- Cross-linkers
- pH
- Additives

\[-(\text{CH}_2-\text{CH}≡\text{CH-CH}_2-\text{CH-CH}_2-)n-\]
UF chemist can make resin more compatible with latex by adjusting:

- Resin's Molecular Weight
- MR
- Selecting components and additives
- Designing the right buffer capacity of the resin to match or enhance the latex properties
• An even binder coverage over the whole fiber

OR

• The binder concentrated at the fiber cross-points
Different resins composition, different wetting properties
Aging mechanism of U-F resins depend on the
- Final Formaldehyde/Urea molar ratio,
- Storage pH
- Free urea in the resin

Aging of U-F resins involve
- Changes in resin structure
 - Initial increase in linear methylol groups
 - Subsequent decrease in linear methylol groups
 - Corresponding increase in linear methylene groups
 - Minor changes in branched methylol and methylene groups
 - Decrease in free urea

- Increase in bulk viscosity
- Decrease in absolute molecular weight
- Decrease in cure speed
- Decrease in ultimate bond strength
Functional Group Changes upon aging

NMR data over 25 day period

- Linear Methylene
- Branched Methylene
- Linear Methyld
- Branched Methyld
- Linear Ether
- Branched Ether

Percentage vs. Number of Days
• Although bulk viscosity is an important parameter used to monitor process ability of the resin, it does not provide a measure of resin performance upon aging.

• The increase in bulk viscosity as resins age probably results from associative forces such as hydrogen bonding.

• Decrease in cure speed is related to decrease in molecular weight and methylol content rather than an increase in methylene content.
Resin Stability

25°C

- pH: 7.2, 7.5, 7.8
- Viscosity (cps): 1, 3, 8, 14, 17, 22, 29, 37
- Days: 1, 3, 8, 14, 17, 22, 29, 37

35°C

- pH: 7.2, 7.5, 7.8
- Viscosity (cps): 1, 3, 4, 5, 6
- Days: 1, 2, 3, 4, 5, 6

45°C

- pH: 6.6, 6.9, 7.2
- Viscosity (cps): 1, 2, 3, 4, 5
- Days: 1, 2, 3, 4, 5
• Water
• Formaldehyde
• Methanol
• Low molecular weight compounds
Ammonia modified UF resin at >400°C:

- Decomposition products of UF part: CH2O, HCl, HCN, COx, SOx, NOx, NaxOx, sodium carbonate & other organic compounds

- Ammonia-flammable, will flash off

- Low flashpoint amines - will flash off with heat with the presence of characteristic ammonia odor, decomposition products include COx, NOx
Acknowledgements

I would like to thank Teong Tan, Mark Anderson and Reggie Mbachu for their help and valuable advices
Agenda

- What is a Latex Binder?
- Designing a Latex Binder
- Nonwoven Performance
Latex in Glass Mat Products -

3 distinct functions

1. **Additives** to UF
 (Roofing mat, up to 12wt%)

2. **Sole Binders** (Specialty mat)

3. **Coatings**
Latex as Glass Mat Binder (x500)
Latex Binders

- Water Borne

- Versatile
 - e.g. UF Modifier or Sole Binder or Coating

- Tailor properties: Flexibility
 - Hydrophobicity
 - UV, Solvent resistance
Latex made by Emulsion Polymerization:

- Polymerization occurs in each particle
 \textit{monomer migrates through H2O to particle}
 (100-1000 nm diameter)

- Polymers (& most monomers) are \textit{NOT}
 water soluble.

- Polymer particles are stabilized by surfactants & colloids
Emulsion Polymerization Schematic

- Monomer Droplets
- Monomer Molecules
- Water
- Micelle
- Initiator-Radical
- Polymer
Viscosity vs. Molecular Weight

Water soluble Polymer vs. Latex

![Graph showing the relationship between viscosity and molecular weight for water soluble polymer and latex.](image-url)
The Life of a Latex Particle…

- **Formation & Growth of Polymer Particle**
 variable composition, Mw, particle size

- **Particles (wet) deposited** onto substrate
 curtain coater, spray, roll coat

- **Film Formation Process:**
 Individual particles \rightarrow Coalesced polymer film
 Coalescents?
 Heat? Time?
Film Formation

Aqueous Dispersion

Water Evaporation

Close Pack Spheres

Polymer Deformation

Continuous Polymer Film
Dried Latex v. Water Soluble Polymer

Latex

Aquaset 600

St/acrylic latex + polyol, Tg=130°C

Polyacid + polyol
Nonwoven Performance:

- Tensile Strength (rigidity)
- Tear Strength
- “Elasticity” (extensibility)
- Hand or “feel”
- Hydrophobicity
Latex Product Development

Monomer Selection
- Tg
- Functionality
- Molecular Weight Crosslink Density

Process Parameters
- Physical
- Particle Size Distribution
- %Solids
- pH
- Viscosity
- Surface Tension
- Mechanical Stability
- Viscosity response
- Cohesive Strength
- Flow and leveling
- Coalescence

Film Rheology
- Hand
- Film Strength
- Heat Resistance

Hand
- Adhesion
- Mechanical Stability
- Water Resistance
- Post crosslinking
- Solvent Resist.
- Hydrophobicity
- UV Resistance

Film Strength
- Heat Resistance
- Tack

Heat Resistance
- Tg

Particle Size Distribution
- Monomer droplet
- Surfactant
- Monomer
- Initiator Radical
- Propagating Radical

Flow and leveling
- Coalescence
Composition Guidelines

- **Acrylics** (BA, EA, EHA, MMA) for UV resistance.
 - MMA exceptional.
 - EHA for water resistance.

- **Styrene** (St) for Water/alkalai Resistance (hydrophobic)
 - Degrades over extended exposure to UV.

- **Acrylonitrile** (AN) for Solvent Resistance (hydrophillic)
 - Discolors under UV (unsaturation).

- **Vinyl Acetate** (VA) Low Cost
 - Hydrolyzes
 - Degrades under UV
Backbone Composition

Vinyl Monomer

H H

\(\text{C} = \text{C} \)

H R

Vinyl Polymer

\[\cdots \text{C} \cdots \cdots \]

R R R
Acrylates

$$R: \quad \begin{array}{c}
\text{C} - \text{OC}_2\text{H}_5 \\
\parallel \\
\text{O} \\
\end{array}$$

Ethyl Acrylate

$$\begin{array}
\text{H} & \text{H} \\
\mid & \mid \\
\text{C} = \text{C} \\
\mid & \mid \\
\text{H} & \text{C} - \text{OC}_2\text{H}_5 \\
\parallel \\
\text{O} \\
\end{array}$$
Methacrylates

H: CH₃ R: C – O – CH₃

Methyl Methacrylate

H CH₃
 | |
C = C
 | |
H C – OCH₃
 | |
 O
Acrylic Copolymer

Ethyl Acrylate/Methyl Methacrylate Copolymer
Rigidity: affected by Tg
Tg = f(monomer choice, crosslinking)

G'(rubbery plateau) ~ 1/Me ~ Crosslink density

Monomer Choice – Guidelines

Hydrophobicity independent of Rigidity

<table>
<thead>
<tr>
<th>Monomer</th>
<th>Tg (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-EHA</td>
<td>Most Hydrophobic</td>
</tr>
<tr>
<td>Styrene</td>
<td></td>
</tr>
<tr>
<td>Butyl Acrylate</td>
<td></td>
</tr>
<tr>
<td>Methyl Methacrylate</td>
<td></td>
</tr>
<tr>
<td>Ethyl Acrylate</td>
<td></td>
</tr>
<tr>
<td>Methyl Acrylate</td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td></td>
</tr>
<tr>
<td>Vinyl Acetate</td>
<td></td>
</tr>
<tr>
<td>Acrylic Acid</td>
<td>Most Hydrophilic</td>
</tr>
</tbody>
</table>
Crosslinking Chemistry #1: **Amides**

- **Acrylamide (AM)**
- **N-Methylol Acrylamide (NMA)**

- **Acid/Heat-catalyzed Crosslinking** \rightarrow methylene bridge

```
H
\[ \text{CH}_2=\text{C} - \text{NH}_2 \]  \[ \text{CH}_2=\text{C} - \text{NH} - \text{OH} \]
```

\[\text{CONH} \quad \text{H}_2\text{O} \quad \text{CH}_2\text{O} \]

```
H
\[ \text{CH}_2=\text{C} - \text{CONH} \]  \[ \text{CH}_2=\text{C} - \text{CONH} \]
```

\[\text{H}_2\text{O} \quad \text{CH}_2\text{O} \]
Crosslinking Chemistry #2: Acid/Polyol

Ester Crosslinks + H₂O

CH₂O-free

Aquaset LT™
Nonwoven Performance:

- Tensile Strength (rigidity)
- Tear Strength
- “Elasticity” (extensibility)
- Hand or “feel”
- Hydrophobicity
Tensile Strength: Latex-Modified UF

Dry Tensile Strength

10% Modifier in UF, Cured 2.5min/204C

95% confidence intervals (pooled, n=15 from 3 mats)

<table>
<thead>
<tr>
<th></th>
<th>Tensile Strength (lb/in)</th>
<th>% Strength Retention (wet/dry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UF</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>UF/LatexA</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>UF/LatexB</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>UF/LatexC</td>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>
Tear Strength: Latex-Modified UF

Tear Strength
10% modifier in UF, cured 2.5min/204C
95% confidence interval (n=12 from 3 mats)

Tear Strength (g)

UF UF/LatexA UF/LatexB UF/LatexC
Crosslinked Latex (sole binder):

High strength & high temperature flexibility

17% LOI on glass mat, cured 2min/200C (no pre-dry)
Crosslinked Latex (sole binder):

Excellent Tear Strength

Tear Strength: Crosslinked Latex vs. Modified UF (10% modifier)
1 inch glass, 17% LOI

- UF/ModA
- Latex, Tg=72°C
- Latex, Tg=55°C
THANK YOU

Jean Brady
The Dow Chemical Company
Spring House, PA 19477
215-619-5438