Tissue Properties and Manufacturing

Forming and TAD Fabrics

Peter McCabe
Tissue Business Leader
AstenJohnson
Forming Fabrics
Role of Forming Fabrics on Tissue Production

“THE FORMING FABRICS ARE THE MAJOR INTERFACE BETWEEN THE STOCK JET AND THE MECHANICAL ELEMENTS FORCING DRAINAGE TO OCCUR”

FORMING FABRICS THEREFORE
Impact Paper Machine and Fiber Efficiency as well as Final Sheet Quality
Role of Forming Fabrics on Tissue Production

Stock Drainage — Take fiber from head box consistency of 0.05 – 0.50% and deliver sheet to pick-up / transfer at 8-25%

Provide Fiber Support — Build uniform sheet, desired sheet properties, and first pass retention

Efficient Machine Operation — Drainage rate, fiber and water carry back, cleanability, and drive load are all impacted by the forming fabric design

Productivity — Machine speed, breaks, sheet transfer, holes all impact the machine production efficiency

Energy Use — Higher solids to pick-up and uniform drying
Role of Forming Fabrics on Tissue Production

Sheet Properties – The forming fabric will impact

Directly
• sheet formation,
• sheet profiles (CD and MD)
• Tensile strength
• Fiber orientation
• mechanical retention

Indirectly - uniformity of the sheet delivered to the crepe blade
• Sheet softness
• Bulk
• Stretch
• Absorbency
Forming / TAD Fabric Terminology

- **Monofilament Strand** — Forming / TAD fabrics are woven on a loom from extruded plastic yarns. Modified polyester is the most common material but other materials, such as nylon, are also used.
- **Strand Size** — 0.10 mm to 0.45mm most common in Tissue Fabrics.
- **Warp** — The machine direction (MD) strands.
- **Weft (shute)** — The cross machine direction (CD) strands.
- **Mesh** — The number of MD strands per unit area (inches or cm).
- **Count (knock)** — The number of CD strands per unit area (inches or cm).
- **Weave** — The design of the pattern in the fabric
- **Shed Pattern** — The repeat pattern in the design
Forming / TAD Fabric Terminology

• **Drainage Area %** - The percent open area on the sheet side of the fabric. Can also calculate mid-plane and machine side DA for multi-layer fabrics

• **Frames Count** — The number of holes per unit area in the sheet side of the fabric

• **Support Points** — The number of knuckles per unit area on the sheet side of the fabric

• **FSI** – Fiber support index. Calculation used to indicate how well the fibers are supported on the sheet side of the fabric. Can compare similar designs only. Has limitations on complex double and triple layer fabrics

• **Maximum Frame Length** — Distance between CD strands on widest MD drainage hole
Forming / TAD Fabric Terminology

- **Caliper** - The thickness of the fabric

- **Void Volume** — The amount of space in a volume of fabric that is not occupied by solid material. Can affect water carry of a fabric. Void volume is used to calculate the required flooded nip water required to flush a fabric.

- **Elastic Modulus** — The resistance to stretch in the MD direction. Important for fabric stability

- **Air Permeability** — Measure of air flow through a fabric at a standard area and pressure drop. Normally listed as cfm. Not an indicator of drainage rate on fabrics of different designs.

- **Drainage Index** — Design as a tool for determining relative drainage rate of a fabric design. Effective for single layers but not double or triple layers as the mid-plane and bottom layers are not involved in the calculation.
Fabric Design Selection

Considerations
- Weave
- Material
- Mesh/Count
- Strand Diameter

Parameters
- % Drainage Area
- Air Permeability
- Maximum Frame Length
- Frames count & Shape
- Elastic Modulus
- Caliper – Void Volume
- Fiber Support Index
- Cleanability
Machine Design Considerations

<table>
<thead>
<tr>
<th>PAPER</th>
<th>PAPER MACHINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Grade of Paper</td>
<td>• Type and Manufacturer</td>
</tr>
<tr>
<td>• Type of Furnish</td>
<td>• Size (width and length)</td>
</tr>
<tr>
<td>• Weight Range of Product</td>
<td>• Speed Range</td>
</tr>
<tr>
<td>• Wire Mark Considerations</td>
<td>• Type of Pickup</td>
</tr>
<tr>
<td></td>
<td>• Head box Flow Rate</td>
</tr>
<tr>
<td></td>
<td>• Operating Tension</td>
</tr>
<tr>
<td></td>
<td>• Take-Up Length</td>
</tr>
<tr>
<td></td>
<td>• Fabric Run History</td>
</tr>
<tr>
<td></td>
<td>• Shower Set Up</td>
</tr>
</tbody>
</table>
Fiber Support - The Critical Difference

- Same fiber, same fabric, same method...different results.
Forming Fabric Design Construction

- **Single Layer** - have One MD Yarn and One CMD Yarn.
- **Double Layer** - have One MD Yarn and Two CMD Yarns.
- **2.5 Layer** - have One MD Yarn and Three CMD Yarns.
- **Triple Layer** - have Two MD Yarns and Two or Three CMD Yarns Depending on the Method Used to Bind the Two Layers of the Structure.
Single Layer Profiles

5 Shed, 2,3

5 Shed, 1,4
Double Layer Profiles

8 Shed
2.5 Layer Profiles

7 Shed
Triple Layer Profiles

3 Shed Top
4 Shed Bottom

Plain Weave-Top
4 Shed Bottom
Forming Designs and Applications

Single Layer
(OT 20-35 PLI)
Advantage
- Lowest Cost
- Easy to Clean

Disadvantage
- Low Fiber Support
- Low Durability
- Low Seam Strength
- Limited Designs

Double Layer
(OT 25-50 PLI)
Advantage
- Higher FSI
- Good Stability
- Longer life
- Improved Retention

Disadvantage
- Higher Cost

Triple Layer
(OT 30-80 PLI)
Advantage
- High Drainage
- High formation
- Most Durable
- High Retention
- High Stiffness

Disadvantage
- Higher Void volume
- Higher Cost
Trends In Tissue Forming Fabrics

Triple Layers - Dominant Tissue Design

Triple Layer Advantages

• Ability to have fine sheet side and durable machine side
• Engineered drainage potential
 Can control drainage rate with weave design
 High drainage rate potential – straight through drainage
• Increased mechanical retention
• High fabric stiffness and width stability
 Reduced CD profile variation
 Stable width for use in Crescent formers with trim beads
• Long life potential
 Large machine side wear strands
 Durable and damage resistant
• Easy to clean

Excellent shower penetration – with straight through drainage holes
Tissue Forming Fabrics – Position Application

Triple Layers
- Twin Wire Outer positions – Stiff, fast drainage, high support
- Inner positions suction roll – Thin, high support
- Crescent Formers – Stiff, width stable, high support
- SBR – Thin, fast draining, high support, low water carry

Double Layers
- Twin wire Inner positions – Support and durability
- SBR – Ultra Fine, thin, high support

Single Layers
- Inner position transfer fabrics
Triple Layer Tissue Sales Growth
Tissue Triple Layer Designs

Intrinsic Weft Tied (SSB)
- High Drainage Rates
- Superior CD Profiles – High Stiffness
- Higher Caliper
- Best Dimensional Stability
- No Delamination
- Strong Seam

Warp Interchange / Warp Tied
- Reduced Fabric Caliper
- Lower Drainage Rates
- No Delamination
- Efficient to Manufacture – Lower Cost

Conventional Tied
- Prone to Delaminate
Tissue Triple Layer Designs

3-Shed Top, 4-Shed Bottom Weft Tied SSB Triple Layer Tissue Forming Fabric
Tissue Triple Layer Designs

Intrinsic Weft Tied (SSB)

Sheet Side

Pair of Intrinsic Weft Yarns

Warp Interchange / Tied

Tie Strands
Tissue Triple Layer Designs

Intrinsic Weft Tied (SSB)

- Sheet Side
- Pair of Intrinsic Weft Yarns

Conventional Tied

- Tie Strands
Twin Wire Former

Fabric Requirements

Outer Position:
- Fast Drainage
- High Fiber Support
- High Fabric Stiffness and Stability
- Low Fabric Stretch
- Easy to Clean

Inner / Backing:
- Easy to Clean
- Low Fabric Stretch
- Good Durability for Life
- High Fiber Support
- (c-wrap TAD and Suction)
Crescent Former

Fabric Requirements
Width Stability – Sheet Width Control
High Fabric Stiffness – CD Profile
Fast Drainage – High Speed Operation
High Fiber Support - Formation and Retention
Low Fabric Stretch – High Tension Operation
Easy to Clean – Efficient Showering
Low Water Carry back – Dry Return Run
Suction Breast Roll Former

Fabric Requirements
Fast Drainage – Very Short Forming Zone
High Fiber Support – Formation and Retention
Low Caliper – Drainage and Showering
Fabric Durability - Life
Forming Fabric Production Processes

Yarn Storage → Warping → Weaving → Inspection

Heat Setting → Relaxation → Cutting

Seaming → Finishing → Packing / Shipping
Strand spools
TAD Fabrics
TAD Fabric Designs

M-Weave

G- Weave

Multi-Layer Shaping
TAD Fabric Designs

- Most conventional TAD fabrics are based on 5-shed, single layer, 44 mesh warps
- 36 and 50 mesh warps also used
- M-weave used most on Bath Tissue
- G-Weave used most on Towel
- New Multi-layer Shaping designs entering market
44 M-Weave

Used Primarily for Bath Tissue
Medium bulk generation
Good softness
44 G-Weave
Used Primarily for Towel Production
Increased bulk generation

Sheet / Yankee Side

Machine Side
Multi-Layer Shaping

Customize sheet impression
Able to develop increased bulk and softness
Increased durability and life potential

Sheet / Yankee Side
TAD Seam Development

- New Technologies able to increase seam strength and reduce seam width
- Seam no longer limiting factor for weave design or fabric life
- Laser Welding
- Ultrasonic Welding
Benefits of Laser Welding for TAD

• Significant increase in seam strength

• Reduce seam width by 50-70%

• Seam area permability consistent with body of fabric

• Design Flexibility
 - Seam strength no longer consideration in weave design
 - Customize weave to produce unique pattern in sheet
Glue vs. Laser Weld

Air perm in the glued seam area is averaged 480cfm and 590cfm in the cloth area.