

Improved Energy Efficiency in Paper Making by Reducing Dryer Steam Consumption Using Advanced Process Control

Paul Austin, John Mack & Matt McEwan: Perceptive Engineering Ltd Puya Afshar & Martin Brown: The University of Manchester Jan Maciejowski: Cambridge University Engineering Dept

RETHINK PAPER: Lean and Green

PaperCon 2011 Page 1133

Synopsis

- The energy used in paper making
- The need for multivariable process control: Advanced Process Control
- Reduction in the energy used in paper making: some dryer steam reduction results from recent APC implementation projects
 - Board making: >10% energy reduction to date + consequent production benefit
 - **Newsprint:** also >10% energy reduction to date
- Towards further reduction of dryer steam use: results from current paper machine investigations of the potential for dryer steam reduction
 - by better control of drainage
 - by optimisation of the dryer hood
- Case study material from several paper machines:
 - Two ply board machines in England and Australasia
 - Newsprint machines in England and in North America
- Conclusion

PaperCon 201

The Energy Used in Paper Making

• Paper-making is a very energy-intensive industrial activity. UK 2008 figures:

Paper Type	Energy Consumed		
Packaging board	2 – 3 MWhr/t paper made		
Newsprint	3 – 4 MWhr/t		
Tissue	5 – 7 MWhr/t		
Fine Papers	4 – 8 MWhr/t		
Specialty papers	Up to 20 MWhr/t		
UK Average	4 MWhr/t		

- Energy was cheap & plentiful when present day pulp & paper industry processes were designed:
 - About 70 paper machines are still operated in the UK but >200 operated 50 years ago
 - Each machine costs £10s of millions each; not easy to change technology fast
- The rising cost of energy has shut more than 10 UK paper mills in the last three years; this picture is reflected elsewhere in the Northern Hemisphere
- Thus there are strong incentives to reduce the energy used in paper making

PaperCon 201

Energy Use on the Paper Machine

- Paper machines use between 50% and 80% of mill energy (when there are no pulp mills on site)
- Some of this is electrical energy used in drives and in running vacuum pumps and stock pumps (for moving fluids)
- But steam used in drying the sheet is the biggest energy consumer
- Water content of the sheet:
 - when sheet is just formed, 99.1% is water: vacuums and aerofoils drain it
 - as it enters the press section the sheet is ~88% water
 - as it enters the dryer the sheet is ~50% water: steam is used to dry the sheet to ~8% water content

Dryer Steam: the Big Energy User in Paper Making

It is known that the drying section of a paper machine:

- reduces sheet moisture content, M, from $\sim 50\%$ to $\sim 8\%$ M = water/(water + fibre)
- uses up to 80% of mill-wide energy

FAPPI

• but removes less than 1% of water from the sheet

Effect on Dryer Steam Use of Decreasing Sheet Moisture Content at Dryer Entry

 Take headbox consistency as 0.9% and consider the fate of 100g of stock laid on the wire. Using M = mass of water in sheet/(mass of total solids + mass of water)

	At the headbox	At the couch	Into the dryer	Better dryer feed	At the reel
Sheet moisture M	99.1%	88%	50%	45%	8%
Water in sheet	99.1g	6.6g	0.9g	0.736g	0.078g
Solids in sheet	0.9g	0.9g	0.9g	0.9g	0.9g
Water removed		92.5g	5.7g	5.86g	0.822 (0.658)g

- Wire drains over 92% of water, press drains <6%, dryer removes <1% !!
- If can ↓ sheet moisture to the dryer by 5%, water to be removed in the dryer ↓ from 0.822g to 0.658g. A 5% ↓ in sheet moisture => 20% ↓ in dryer load ie
- "A 1% reduction in sheet moisture to the dryer yields a 4% reduction in dryer load"

PaperCon 2C

Ways to Reduce Dryer Steam Use in Paper Making

Dryer steam use constitutes up to 80% of the energy used in making paper => interest in determining opportunities to reduce dryer steam use:

- Reduce the incidence of over-drying of the sheet
 - A 1% increase in sheet moisture content ↓ dryer steam demand by 1.34%
- Reduce the incidence of over-weight making of the sheet
 - A 1% reduction in sheet weight reduces dryer steam demand by 1.034%
- Increase drainage of the sheet before it enters the dryer:
 - A 1% reduction in sheet moisture entering the dryer delivers a reduction in dryer steam demand of 4%: a very useful magnification factor!
- Improve dryer efficiency: measuring dryer efficiency in terms of mass water evaporated/mass of steam used paper dryers are typically ~50% efficient. Opportunities to improve this:
 - Better regulate and optimise the operation of the dryer hood
 - Use all available variables for control of sheet drying: for each dryer section use
 - Differential pressures as well as supply steam pressures
 - Condensate recovery rates where these are separately manipulable

Advanced Process Control in Paper Making

- Most processes in the pulp & paper industry are strongly multivariable
- Control problems in the paper industry require multivariable solutions:
 - A paper machine has many unused control variables because it has never been clear how to use them in a PID control law eg
 - Formation and drainage are jointly affected by the same input variables, often >15 of them
 - Key quality variables are often controlled using a PID loop that adjusts just one of several variables affecting the quality variable eg
 - Recycled pulp brightness: controlled by bleach rate alone (expensive), ignoring other influences on brightness uplift
- Advanced Process Control (APC) offers optimal multivariable Model-based Predictive Control (MPC) subject to specified constraints:
 - profit can often be made by operating close to or at constraints
 - why control a tank level to a setpoint (as with PID) when what is required is simply to keep the tank from over-flowing or under-flowing
- APC was developed in oil & petrochem still quite new in the paper industry

PaperCon 201

Advanced Process Control: Some Important Characteristics

- Need first to build a multivariable process model: the model describes how each input affects all the outputs
- There can be a model for each grade range
- Can specify constraints on each input and on each output
- In pulp & paper, operating priorities can change hour by hour => need real-time optimisation: can run APC with optimisers to determine optimal setpoint targets within the specified constraints
- Every application has given considerable performance improvement: APC provides a step change in control technology
- We have engineered successful APC applications on most p&p processes: project payback times to date have been between 0.5 and 9 months

 \square

Energy Reduction in Paper Making Using APC: Some Recent Results

• The following results arise from APC implementations on paper machines making board and paper machines making newsprint

Reduced Energy Consumption in Paper Making: The Role of Wet End Stability Improvement

- To optimise and better control energy use in paper making, a necessary first step is often to improve wet end stability
- White water consistency, retention, ash content, formation and drainage are all affected by a number of stock approach and machine variables, many having an impact on energy use in paper making:
 - refiner specific energy targets
 - the flowrates & consistencies of fresh stock, broke and recovered fibre
 - the dosage rates of wet end chemicals, including retention aids & fillers
 - headbox parameters such as slice gap and jet to wire ratio
 - wire vacuums
- APC Objective: maintain stability of white water consistency, retention, ash content and other quality parameters to provide a platform from which to be able to optimise drainage in order to minimise energy use
- Multivariable model-based control tools are very well suited to this multi-dimensional control and optimisation problem

Performance Improvement in Paper Making: 1. Multi-Ply Board Machines

- Design objectives for an APC implementation on an Australasian 2-ply board machine making 100 – 220 gsm products:
 - Improve machine stability
 - Reduce energy usage
 - Increase production
- Many board machines are dryer-bottlenecked => reducing steam consumption can have three benefits:
 - Lowers cost of paper production by reducing specific energy consumption
 - Less steam needed/tonne => more tonnes possible: increased production
 - Drier sheet => improved runnability and faster average speeds

Australasian Board Machine: Stability Results

- There was a big reduction in variation:
 - standard deviations of wet end parameters reduced by between 75% & 90%.
 - reductions in SDs of WWC: TL by 82% and BL by 73%:

Australasian Board Machine: Steam Saving >10%

Grade (GSM)	Steam Consumption (t/t) under Regulatory Control	Steam Consumption (t/t) under APC	% Reduction in Steam Use
108	2.17	2.11	2.92
115 A	2.53	2.23	11.99
115 B	2.31	1.90	17.75
120	2.22	2.00	9.93
150	2.24	2.19	2.22
140	2.24	2.01	10.02
200	2.24	1.71	23.67
		Average	11.21%

 How? APC uses flowrate of drainage aid (cheaper) preferentially to retention aid in controlling white water stability => increased drainage flowrates & reduced variation in drainage flowrates at the former:

Suction Box	APC SD (I/min)	Regulatory SD (I/min)	% Reduction in SD
Former Flow 1	177.2	265.1	33.2
Former Flow 2	55.7	68.5	18.7

• Mill now focussing on further improvements in drainage: effect of vacuums & headbox parameters on drainage (current project, reported later)

Australasian Board Machine: Better Quality & Production Increase

- Reduced variation in MD weight & moisture: though the controller was focussed on improving wet end stability alone:
 - The standard deviation of MD Basis Weight was reduced by 19.8%
 - The standard deviation of MD Moisture was reduced by 14.1%
- Production benefits due to:
 - improvements in runnability
 - reduction of the dryer bottleneck (by reducing specific steam consumption)
 gave a production increase in excess of 5.5%

Performance Improvement in Paper Making: 2. Newsprint Machines

- Design objectives for an APC implementation on a North American newsprint machine:
 - Improve machine stability
 - Reduce energy usage
 - Improve colour control
 - Reduce variation in sheet ash

• Multivariable structure of the controller:

North American Newsprint Machine: Stability and Ash Results

• The standard deviation of white (tray) water consistency was reduced by ~60%:

- APC reduced the standard deviation of the sheet ash content by > 50% =>
 - can run higher sheet ash contents and save fibre

North American Newsprint Machine: Energy Saved >10%

	Steam Consumption (t/t)				
Grade	Normal	ControlMV	%Change		
45A	1.820	1.600	12.1		
45B	1.835	1.674	8.8		
48A	1.858	1.613	13.2		
48B	1.854	1.688	8.9		
52A	1.894	1.745	7.9		
52B	1.825	1.649	9.6		
Averages	1.848	1.662	10.1		

- Recent discussions about extending the controller have focussed on:
 - better control of drainage to further reduce dryer steam consumption
 - better control of the dryer and sheet moisture
 - control of luminance/brightness by optimising the use of bright clays, in conjunction with the improved ash control APC has provided

North American Newsprint Machine: Colour Results

We have reduced the SD of A*/B* colour by an average of 66%:

Standard Deviation of A* Colour by Grade

Key Normal Control

A* and B* Standard Deviation						
Normal MPC % Change						
A*	0.088	0.039	58.6			
B*	0.158	0.043	73.1			
Average	0.123	0.041	65.8			

Towards Further Reduction of Energy Use in Paper Making: Better Control of Drainage

- Better control of drainage =>
 - Optimise vacuum power and steam saving, maximise solids content of sheet entering dryer => reduce dryer steam use (1% ↓ in moisture => 4%↓ in steam)
 - Provide better control of sheet moisture
- Many influences on sheet drainage: amount of refining, rate of use of chemical additives (especially drainage aids), stock consistencies, headbox parameters, vacuums imposed, press pressures (current project)
- All of these variables affect other sheet properties than moisture alone => multivariable control can provide coordinated control of drainage and other quality and production variables
- Thus, more intelligent control of drainage can have simultaneous energy reduction and quality improvement objectives resulting in:
 - Reduced steam usage in the dryer, by draining to lower moisture contents
 - Steadier sheet MD moisture profiles
 - Hence steadier draw in the press section
 - Better control of formation (if measured online)

Overview of a Recent Drainage Study on a Two-Ply Board Machine

- Purpose: determine the influence of a comprehensive set of wet-end, headbox and wire-section variables on drainage and sheet moisture.
- Sensors had been installed to measure sheet solids content online at 3 wet end locations: pre-former, post-former, pre-couch
- Study Objectives:
 - Identify which wire-section vacuums have an influence on drainage and what that influence is.
 - Determine which other wet-end and headbox variables also affect drainage.
 - Apply process response tests to the variables and develop a process model from this data.
 - Recommend which of the non-automated vacuums should be automated.
 - Suggest optimal settings for vacuums at the forming table and the former to maximise sheet dryness.
 - Using either regulatory or Advanced Process Control techniques, provide suggestions for a process control strategy for these vacuums and the wet end and headbox variables that are found to influence drainage.

Audit Methodology

- Data was collected by the board machine's APC system, ControlMV.
- Process response tests were applied to 35 key wet-end/wire-section variables.
- Data analysis, correlation, process modelling and simulation was completed using Perceptive Engineering's offline development package, ArchitectMV.
- Correlation matrix displays were used to determine nature of process interactions.
- Later slides show some representative examples of process behaviour.

Operational Data: BL Vacuum Operational Data

Operational Data: The Influence of Freeness

Process Response Tests A Particular Post-Former Vacuum

PIM

Process Response Tests Two Particular BL Vacuum Boxes

PaperCon 201

Process Response Tests One BL Vacuum Box in more detail

• This response data suggests perhaps that too much vacuum on the forming table "seals the sheet"....

Process Response Tests A Particular TL Box

- There is no correlation between the individual TL boxes and dryness, with the exception of box 15 (whose vacuum is separately supplied)
- Box 15 has a correlation to couch roll dryness and wire section power

• Conclusion after examining correlations from all TL variables: too much vacuum is being applied on the TL. This is increasing drive power consumption for no net gain in dryness.

Tests on Headbox Variables

- Process response tests were applied to the following TL and BL headbox variables:
 - Rush/Drag
 - Slice Opening
- Both have a significant effect on pre-former dryness, wire section power, sheet moisture, weight and former total flow.
- In general, applying more drag:
 - Increases pre-former dryness.
 - Decreases sheet moisture and basis weight.
 - Decreases total former flow.
 - Doesn't change the wire section power significantly.
- Opening the slice gap:
 - Decreases pre-former dryness.
 - Decreases sheet moisture and basis weight.
 - Increases total former flow.
 - Increases wire section power.

Process Response Tests BL Headbox Rush/Drag and Slice Opening

The influence on sheet dryness is not as clear. Initial steps had a good response, but later steps did not.

Rush/drag has a strong effect on power, moisture and former flow. When rush/drag is reduced moisture and total flow both increase.

Process Response Tests Headbox Correlations

Bottom Layer

Large effect on pre-former dryness, flow and moisture

Very large effect on pre-former dryness, flow and power

Top Layer

Large effect on power; small effect on couch dryness nothing on sheet moisture

PaperCon 201

Large effect on power only

Process Modelling

- The set of process response tests and selected running data has been used to build a preliminary process model.
 - This model is preliminary in that it doesn't take into account changes in process gain due to grade and basis weight (further tests would be required).
- As inputs, the model uses all of the serviceable forming table vacuums, headbox parameters, the bottom layer drainage rate transmitter and the measured steam flow to the machine.
 - It predicts changes in the online sheet dryness, wire section power load and MD moisture.
- The model was then used to:
 - Determine which vacuums and other variables have the strongest influence on moisture.
 - Quantify the effect of freeness changes on drying.
 - Build a simulation to evaluate various optimisation strategies.

Process Model – Part A **Headboxes and Pre-Former Vacuums**

The model provides a new

prediction every 20

Process Model – Part B Former and TL Vacuums

Process Model Example Model Predictions

Process Optimisation Scenarios

- A process simulator and Model Predictive Controller have been constructed from the model.
- The simulator runs ten times faster than real-time. This allows different control and optimisation "scenarios" to be tested and evaluated quickly:
 - Scenario 1: Electrical Energy Saving
 - Maintain the same pre-couch dryness and steam consumption.
 - Save 10% in total electrical energy.
 - Maintain at least 8200 I/min former flow and control MD moisture to SP.
 - Scenario 2: Steam Energy Saving.
 - Allow pre-couch dryness to move as required.
 - Save 10 % in steam energy.
 - Maintain at least 8200 l/min former flow and control MD moisture to SP.

Process Optimisation Scenarios Scenario 1: Electrical Energy Saving

PIMA

Process Optimisation Scenarios Scenario 2: Steam Energy Saving

PIMA

	🗽 Scenario 2_ Steam Sa	aving				<u> </u>
	Sheet Moisture MV Setpoint	02 Mar 11 16:32:52		6m 38.0s	8.80	02 Mar 11 16:39:30 8.87
3. This increases	Couch Roll Dryness		8.80	8.80 8.79	14.00	8.76
couch dryness,	Wire Sect Drive Power		13.62	13.85	14.00	13.62 772.00
reduced.	Pre Former Dryness	·	769.63	754.07	731.68	731.68 3.27
	Post Former Dryness		3.27	3.11	3.04	3.04
	Total Former Flow		6.62	6.74	6.83	6.62
	Response (Y) Low Constraint		8500	8500	8939.23- 8500	~8946.92
	BW Vacuum Box 11		8785.14	8837.18	-10.31	-10.30
2 Most BL vacuums	BW Vacuum Box 10B		0.00	10.10	-2.00	-11.00 -2.00
are released slightly.	BW Vacuum Box 10A		-6.00	-3.60	-2.00	-6.00 -2.00
	BW Vacuum Box 9A		-5.00	-2.38	-2 00	-5.00 -2.00
4. A 9.6% steam	BW Vacuum Box 9B		-4.00	-2.02		-4.01
a bonus, electrical	Former 2nd Comp Vac SP		-3.80	-2.12	5. In the final p	art of this er 10% saving i
energy also drops by	War SP		1.10	1.17	attempted. This	s causes all the
2%.			1.10	1.10	vacuums to sa	turate. This wou
1. In this simulation we	TW Box 10A-14 Av Vacuum		-6.00			ble in reality.
ntroduce total steam	Total Steam Flow		3.25e+04	29250	325	3.25e+04
10% and give it a target	Steam Saving		3.25e+04	2.94e+04	18.79	18.97
value	Electrical Saving		0.1725		4.73	4.98
		02 Mar 11	[-0.1735 16:34:01	2.01	02 Mar 11	-0.2593 16:38:26

Recommendations 1: Vacuums and Headbox Parameters that Affect Drainage

The study has investigated which wet-end, headbox and wiresection variables have an influence on drainage and sheet moisture:

- All tested vacuums have an influence on drainage, but not all of them have a corresponding influence on sheet moisture:
 - Too much vacuum in the Bottom Layer (BL) forming table boxes has a detrimental effect on drainage. Early high vacuum increases pre-former dryness but reduces pre-couch dryness and increases both sheet moisture and wire-section drive load.
 - Similarly on the Top Layer (TL) too much vacuum is presently being applied at the expense of electrical energy efficiency.
 - Vacuums after the former also have an effect on dryness but do not have an effect on sheet moisture. This suggests a buffering effect in the press-section.
- As expected, each headbox's slice gap has a large impact on sheet moisture. This response tends to dampen out as the short-circulation system balances out. The TL rush/drag has a surprisingly strong effect on wire section power and pre-couch dryness.

Recommendations 2: Optimal Strategy to Maximise Sheet Dryness

- Optimal settings: use as little vacuum on the forming table as possible.
 - The wet or activity line should be just before the former's lead roll.
 - The second compartment should have a reasonable amount of vacuum applied (1.2-1.6 MWC).
 - The third compartment should have a low vacuum as it increases drive power consumption unnecessarily.
 - The TL vacuums should be released as much as possible.
 - It would be worth experimenting with more drag on the TL headbox.

Towards Further Reduction of Energy Use in Paper Making: Better Control of the Dryer (1)

We propose two approaches to better control of the dryer:

- **1.** Use all the available dryer variables to better control the drying of the sheet
 - The traditional regulatory approach to controlling a paper machine dryer usually uses a three term (PID) loop:
 - driven by the difference between measured and target sheet moisture
 - control action is cascaded to operate on steam pressures in 3 7 dryer sections, aiming to meet the moisture target
 - A multivariable APC approach to dryer control could be based on building separate models of the effect on sheet moisture of:
 - the **steam pressure** in each dryer section
 - the differential pressures across each dryer section
 - the **condensate recovery rate** from each dryer section (if independent)
 - Differential pressures and condensate recovery rates are seldom used in closed loop dryer control schemes: neither operating practice nor the literature provide clear guidelines about how to use these variables to optimise dryer performance
 - A control system with closed loops around steam pressure alone will be ignoring some important variables of influence on dryer operation

Towards Further Reduction of Energy Use in Paper Making: Better Control of the Dryer (2)

- 2. Optimise the operation of the dryer hood
 - The traditional regulatory approach to control of the hood environment of a paper machine dryer also usually uses three term (PID) loops
 - Actually the hood is a multivariable system requiring real time optimisation to minimise energy use
 - In a current project, we have found modellable effects on sheet moisture and dryer steam use of variables such as
 - Inlet air flowrates, on both the wet side and the dry side
 - Exhaust air temperature targets
 - Exhaust air humidity targets
 - Some early analysis of these opportunities is reported in the paper

Conclusion

- A significant reduction in the energy consumed in paper making is possible using Advanced Process Control (APC). Methodology:
 - Model the machine as a multivariable process
 - Use this model to design a multivariable model predictive controller
 - Run the controller with powerful real-time optimisation functionality
- Evidence to date shows there are good prospects of reducing the energy used in paper making by at least 20%:
 - 10% reduction from better control of wet end stability
 - Up to another 10% reduction by better control of sheet drainage
 - There are prospective further benefits, not yet quantified, arising from:
 - Better control of the dryer, using all available dryer variables
 - Optimisation and better regulation of the dryer hood

