Archive

About TAPPI Journal

An internationally recognized technical publication for over 60 years, TAPPI Journal (TJ) publishes the latest and most relevant research on the forest products and related industries. A stringent peer-review process and distinguished editorial board of academic and industry experts set TAPPI Journal apart as a reliable source for impactful basic and applied research and technical reviews. Read more.

Browse All Issues

  • Filter by date:
Editorial: TAPPI Journal goes Open Access in 2020, TAPPI Journal October 2019

October 01, 2019

ABSTRACT: Scientific publishing has changed significantly since the 1990s with the evoluation of the internet, which has largely migrated journals from subscription-based print publications to online content like eBooks, portable document formats (PDFI's), and web-based HTML files. Along with these changes in format has come a growing trend for online journal content to be either partially or fully "Open Access" (OA) so that more institutions and individuals can take full advantage of scholarly literature without a subscription of society membership status.

Evaluation of novel drum chipper technology: pilot-scale production of short wood chips, TAPPI Journal October 2019

October 01, 2019

ABSTRACT: Impregnation of wood chips with acidic pulping liquors is improved when using short chip lengths. If the average wood chip length is too short, conventional chipping technology will generate excess small material, such as pin chips and fines. The possibility of using newly developed drum chipping technology to produce short-length wood chips was evaluated with a pilot drum chipper operating at different drum velocities and in-feed angles. With a drum velocity of 30 m/s, the average wood chip lengths and the combined fractions of pin chips and fines were 24 mm and 3.3%, 22 mm and 4.2%, and 17 mm and 8.5%. The highest fractions of total accept chips (large and small accepts), 89% to 90% without screening, were observed for drum velocities of 30•34 m/s and average wood chips lengths of 21•22 mm. The results indicate the potential of drum chipping technology for producing short wood chips with relatively high fractions of accept chips and tolerable fractions of pin chips and fines.

The solubility of calcium carbonate in green liquor handling systems, TAPPI Journal October 2019

October 01, 2019

ABSTRACT: The formation of hard calcite (CaCO3) scale in green liquor handling systems is a persistent problem in many kraft pulp mills. CaCO3 precipitates when its concentration in the green liquor exceeds its solubility. While the solubility of CaCO3 in water is well known, it is not so in the highly alkaline green liquor environment. A systematic study was conducted to determine the solubility of CaCO3 in green liquor as a function of temperature, total titratable alkali (TTA), causticity, and sulfidity. The results show that the solubility increases with increased temperature, increased TTA, decreased causticity, and decreased sulfidity. The new solubility data was incorporated into OLI (a thermodynamic simulation program for aqueous salt systems) to generate a series of CaCO3 solubility curves for various green liquor conditions. The results help explain how calcite scale forms in green liquor handling systems.

Exergy and sensibility analysis of each individual effect in a kraft multiple effect evaporator, TAPPI Journal October 2019

October 01, 2019

ABSTRACT: The multiple effect evaporator (MEE) is an energy intensive step in the kraft pulping process. The exergetic analysis can be useful for locating irreversibilities in the process and pointing out which equipment is less efficient, and it could also be the object of optimization studies. In the present work, each evaporator of a real kraft system has been individually described using mass balance and thermodynamics principles (the first and the second laws). Real data from a kraft MEE were collected from a Brazilian plant and were used for the estimation of heat transfer coefficients in a nonlinear optimization problem, as well as for the validation of the model. An exergetic analysis was made for each effect individually, which resulted in effects 1A and 1B being the least efficient, and therefore having the greatest potential for improvement. A sensibility analysis was also performed, showing that steam temperature and liquor input flow rate are sensible parameters.