Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 121–130 of 185 results (Duration : 0.012 seconds)
Journal articles
Magazine articles
Open Access
Techno-economic analysis of hydrothermal carbonization of pulp mill biosludge, TAPPI Journal March 2023

ABSTRACT: For many mills, the biosludge from wastewater treatment is difficult to recycle or dispose of. This makes it a challenging side stream and an important issue for chemical pulping. It often ends up being burned in the recovery or biomass boiler, although the moisture and non-process element (NPE) contents make it a problematic fuel. Biosludge has proven resistant to attempts to reduce its moisture. When incinerated in the biomass boiler, the heat from dry matter combustion is often insufficient to yield positive net heat. Mixing the sludge with black liquor in the evaporator plant for incineration in the recovery boiler is more energy efficient, but is still an additional load on the evaporator plant, as well as introducing NPEs to the liquor. In this study, treating the biosludge by hydrother-mal carbonization (HTC), a mild thermochemical conversion technology, is investigated. The HTC process has some notable advantages for biosludge treatment; taking place in water, it is well suited for sludge, and the hydrochar product is much easier to dewater than untreated sludge. In this study, two HTC plant designs are simulated using IPSEpro process simulation software, followed by economic analysis. Low temperature levels are used to minimize investment costs and steam consumption. The results show that if the sludge is incinerated in a biomass boiler, payback periods could be short at likely electricity prices. The HTC treatment before mixing the sludge with black liquor in the evaporator plant is profitable only if the freed evaporator capacity can be used to increase the firing liquor dry solids content.

Journal articles
Magazine articles
Open Access
The Shendye-Fleming OBA Index for paper and paperboard, TAPPI Journal March 2022

ABSTRACT: We are proposing a new one-dimensional scale to calculate the effects of optical brightening agents (OBA) on the bluish appearance of paper. This index is separate from brightness and whiteness indices.In the paper industry, one-dimensional scales are widely used for determining optical properties of paper and paperboard. Whiteness, tint, brightness, yellowness, and opacity are the most common optical properties of paper and paperboard. Most of the papers have a blue cast generated by addition of OBA or blue dyes. This blue cast is given because of the human perception that bluer is whiter, up to a certain limit. To quantify this effect, it is necessary to determine how much blue cast paper and paperboard have. As the printing industry follows the ISO 3664 Standard for viewing, which has a D50 light source, this also plays a very important role in showing a blue cast. Color perception is based on light source and light reflected from an object. The ultraviolet (UV) component in D50 interacts with OBA to provide a reflection in the blue region of the visible spectrum. Use of a UV blocking filter results in measurements without the effect of emission in the blue region. This difference is used in determining the OBA effect in the visible range of the paper. This equation is known as the Shendye-Fleming OBA Index.

Journal articles
Magazine articles
Open Access
Multifunctional barrier coating systems created by multilayer curtain coating, TAPPI Journal November 2020

ABSTRACT: Functional coatings are applied to paper and paperboard substrates to provide resistance, or a barrier, against media such as oil and grease (OGR), water, water vapor as measured by moisture vapor transmission rate (MVTR), and oxygen, for applications such as food packaging, food service, and other non-food packaging. Typical functional barrier coatings can be created by applying a solid coating or extruded film, a solvent based-coating, or a water-based coating to the paper substrate using various means of coating applicators.This paper focuses on water-based barrier coatings (WBBC) for OGR, water, MVTR, and oxygen barriers. The main goal was to create coated systems that can achieve more than one barrier property using multilayer curtain coating (MLCC). Curtain coating has emerged as the premier low-impact application me thod for coated paper and paperboard. This paper provides examples using MLCC to create coating structures that provide multiple barrier properties in a single coating step. Barrier polymer systems studied include styrene butadiene, styrene acrylate, vinyl acrylic, and natural materials, as well as proprietary additives where required to give desired performance. The paper also shows how the specific coating layers can be optimized to produce the desired property profile, without concern for blocking, as the addition of a non-blocking top layer can be applied in the MLCC structure as well. Experiments on base sheet types also shows the importance of applying the multilayer structure on a pre-coated surface in order to improve coating thickness consistency and potentially allow for the reduction of more expensive layer components.

Journal articles
Magazine articles
Open Access
The use of hollow sphere pigments as strength additives in paper and paperboard coatings—Part 1: The predictive nature of packing models on coating properties, TAPPI Journal November 2020

ABSTRACT: Hollow sphere pigments (HSPs) are widely used at low levels in coated paper to increase coating bulk and to provide gloss to the final sheet. However, HSPs also provide an ideal system through which one can examine the effect of pigment size and particle packing within a coating due to their unimodal and tunable particle sizes. The work presented in Part 1 and Part 2 of this study will discuss the use of blends of traditional inorganic pigments and HSPs in coating formulations across a variety of applications for improved coating strength. Part 1 of this study focuses on the theory of bimodal spherical packing and demonstrates the predictive nature of packing models on the properties of coating systems containing HSPs of two different sizes. This study also examines conditions where the model fails by examining the effect of particle size on coating strength in sytems like thermal paper basecoats where the non-HSP component has a broad particle size distribution, and how these surprising trends can be used to generate better-than-expected thermal printing performance in systems with low HSP/clay ratios. Part 2 of this study focuses on the incorporation of HSPs of different particle sizes into paperboard formulations to affect coating strength and opacity.

Journal articles
Magazine articles
Open Access
A novel unit operation to remove hydrophobic contaminants, TAPPI Journal April 2020

ABSTRACT: For mills making paper with recovered fiber, removal of hydrophobic contaminants is essential for trouble-free operation of paper machines. Significant cost savings on paper machine operation can be achieved by reducing deposits, which results in better quality, reduced downtime, increased fiber yield, and reduced energy consumption. Bubble nucleation separation (BNS) is a relatively new process for removing hydrophobic particles. When vacuum is applied to a slurry, dissolved gas bubbles nucleate on hydrophobic particles and drag them to the surface for easy removal. We constructed a 16-L batch unit to evaluate the effect of operating parameters on removal of hydrophobic particles, using statistical design of experiments. These results were used to guide our design of a 16-L continuous unit. We tested this unit on laboratory and mill samples. The removal of 60%•80% of hydrophobic particles was achieved with a low reject rate of < 2%.Following on this success, we built a 200-L pilot unit and tested it in our pilot plant. With promising results there, we installed the pilot unit at a commercial paper recycling mill. Over the course of several mill trials, we showed that it was possible to remove a considerable amount of suspended solids from paper machine white water with less than 2% rejects. Unfortunately, due to the unit only treating 50 L/min and the mill flow being 12000 L/min, we were not able treat a sufficient portion of the white water to know whether a large-scale implementation of BNS would improve paper machine runnability.

Journal articles
Magazine articles
Open Access
Print quality of flexographic printed paperboard related to coating composition and structure, TAPPI Journal January 2018

Print quality of flexographic printed paperboard related to coating composition and structure, TAPPI Journal January 2018

Journal articles
Magazine articles
Open Access
Effects of tissue additives on copy paper forming and properties, TAPPI Journal February 2024

ABSTRACT: Laboratory tests were conducted in an effort to determine the effects on paper machine process attributes and the properties of paper made from recycled copy paper furnish upon the addition of chemical agents that are commonly used in the production of hygiene tissue products. Due to continuing growth in tissue and towel grades of paper, such agents are experiencing greater usage. Charge titration test results revealed that certain dry strength agents associated with tissue manufacturing have the potential to shift the balance of charge in papermaking furnish to less negative or even positive values. Creping adhesive was found to contribute to fine particle retention, especially when present at relatively high levels. Release aid and a polyacrylate dispersant had the opposite effect. Low addition levels of both a creping adhesive and a debonding agent surprisingly increased a wide range of strength attributes of paper handsheets in comparison to sheets prepared from unaltered recycled copy paper furnish. The debonding agent decreased paper strength at higher levels of addition. Such effects appear to depend not only on the expected effects of agents themselves, but also on how they affect the charge balance of the wet-end system.

Journal articles
Magazine articles
Open Access
Flocculation of fiber suspensions studied by Rheo-OCT, TAPPI Journal September 2024

ABSTRACT: When dealing with papermaking fiber suspensions, particle flocculation takes place even before the paper web is formed. The particle flocculation depends on several aspects, including particle mass concentration (consistency), particle collisions, electrochemical interactions promoted by chemical additives, etc. Due to its importance, fiber suspension flocculation has been studied for a long time in papermaking, and several methods have been developed for this purpose. The traditional techniques include, for example, focused beam reflectance microscopy (FBRM) and high-speed video imaging (HSVI). Recently, a new optical method, optical coherence tomography (OCT), has emerged for flocculation analysis. The advantages of OCT are the possibility to study opaque suspensions, its micron-llevel resolution, and its high data acquisition speed. The OCT measurements can be combined with rheological (Rheo) measurements, allowing simultaneous measurement of both the time evolution of the floc size and the suspension viscosity. In this work, we used this approach, Rheo-OCT, to study the flocculation of suspensions of various papermaking furnishes. We analyzed the time evolution of the floc size and the fiber suspension viscosity when the studied papermaking suspensions were treated with highly refined furnish (HRF) — a furnish that contained a significant amount of micofibrillated cellulose (MFC)-type fibrils — and/or chemical additives. Such studies can lead to a better understanding of the impact of flocculation on the produced paper web in terms of qualities like formation, drainage potential, and strength behavior.

Journal articles
Magazine articles
Open Access
Amphoteric dry strength chemistry approach to deal with low-quality fiber and difficult wet-end chemistry conditions in the Asian and North American markets, TAPPI Journal January 2024

ABSTRACT: With Japan’s high recycling rates and low access to fresh fiber sources, reaching strength targets in manufacturing packaging materials is a challenge. Declining quality of recycled fiber and minimal freshwater con-sumption results in difficult wet-end chemistry conditions in terms of high conductivity and elevated levels of dissolved and colloidal substances (DCS). These trends are somewhat typical of other Asian regions. Due to global trade, Asian packaging materials have become a part of the North American (NA) raw material pool. The gradual closing of mill water circuits for fresh water and energy savings results in more difficult wet-end chemistry conditions experienced in North America. China’s ban on the import of mixed paper and the consequent ban on all waste-paper imports triggered a significant price drop in recycled raw material, resulting in plans for increased manufacturing capacity in North America. Between increased demand, decreasing fiber quality, and movement towards more closed white water systems associated with packaging grade paperboard (even a virgin fiber mill uses a fair amount of recycled fiber), new methods to overcome strength reduction in raw materials must be proactively considered for North America. Reviewing the strategies currently used in the Asian industry regarding strength development is an excellent starting place for NA producers. A clear difference between Asian and NA wet-end chemistry is the dominant position of amphoteric dry strength agents. This paper reviews the fundamentals of dry strength development that explain the trend towards the increased application of amphoteric dry strength technology for poor-quality fiber and highly contaminated water circuits in Asian markets. This paper discusses the development and application perfor-mance of the novel 4th generation amphoteric polyacrylamide (AmPAM) dry strength technology, based on selected laboratory and mill case studies.

Journal articles
Magazine articles
Open Access
Numerical investigation of the effect of ultrasound on paper drying, TAPPI Journal March 2022

ABSTRACT: The paper drying process is very energy inefficient. More than two-thirds of the total energy used in a paper machine is for drying paper. Novel drying technologies, such as ultrasound (US) drying, can be assessed numerically for developing next-generation drying technologies for the paper industry. This work numerically illustrates the impact on drying process energy efficiency of US transducers installed on a two-tiered dryer section of a paper machine. Piezoelectric transducers generate ultrasound waves, and liquid water mist can be ejected from the porous media. The drying rate of handsheet paper in the presence of direct-contact US is measured experimentally, and the resultant correlation is included in the theoretical model. The drying section of a paper machine is simulated by a theoretical drying model. In the model, three scenarios are considered. In the first scenario, the US modules are positioned in the dryer pockets, while in the second scenario, they are placed upstream of the drying section right after the press section. The third case is the combination of the first and second scenarios. The average moisture content and temperature during drying, enhancement of total mass flux leaving the paper by the US mechanism, total energy consumption, and thermal effect of heated US transducers are analyzed for all cases. Results show that the application of the US can decrease the total number of dryer drums for drying paper. This numerical study is based on the US correlation obtained with the US transducer direct-contact with the paper sample. Thus, future work should include US correlation based on a non-contact US transducer.