Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Collections
Journal articles
Hydrogen peroxide and caustic soda: Dancing with a dragon while bleaching,TAPPI Journal December 2024
Peter W. Hart, Carl Houtman, and Kilby Hirth | TAPPI J. 12(7): 59(2013) - ABSTRACT: When hydrogen peroxide is mixed with caustic soda, an auto-accelerating reaction can lead to generation of significant amounts of heat and oxygen. On the basis of experiments using typical pulp mill process concentration and temperatures, a relatively simple kinetic model has been developed. Evaluation of these model results reveals that hydrogen peroxide-caustic soda systems are extremely sensitive to hydrogen peroxide:caustic soda ratio, transition metal contamination, and temperature. Small changes in initial conditions can result in a closed system becoming explosive. Analysis of model results was used to develop guidelines for safer application of hydrogen peroxide in a mill setting.
Journal articles
Magazine articles
Lignin value prior to pulping (LVPP): An advanced pulping c
Lignin value prior to pulping (LVPP): An advanced pulping concept, TAPPI JOURNAL October 2017
Journal articles
Magazine articles
Degradation of 2,4-dichlorophenol by melamine amine cellulos
Degradation of 2,4-dichlorophenol by melamine amine cellulose- immobilized lacasses, TAPPI JOURNAL October 2017
Journal articles
Magazine articles
Continuous digester rapid thinning, TAPPI Journal June 2024
ABSTRACT: Carbon steel continuous digesters built after the early 1980s are fully stress relieved, so stress corrosion cracking has been less of a concern. However, these newer digesters were designed to run modified cooking processes that have turned out to be much more corrosive than those running with conventional cooking. This corrosion is mainly associated with softwood digesters and appears to be flow related. Average corrosion rates of 40 mil/year are possible on the exposed shell between the wash and extraction screens. The corrosion patterns are visually distinct from surfaces in the upper digester and below the wash screens. This paper goes into practical detail on where it occurs, the causes, visual identification, inspection planning and results evaluation, and finally, how to mitigate this damage, which consists of applying a corrosion resistant barrier. Some discussion on dealing with general corrosion throughout the digester is included.
Journal articles
Gap mechanics in pulp refiners, TAPPI Journal June 2025
ABSTRACT: Studies of pulp refining have shown that a single bar impact on pulp has only a 1%•5% probability of producing a successful refining effect. This study has explored the reason why. An analysis of refining kinetics suggested that small segments of a fiber length, about a fiber diameter in size, are treated during each impact. Measurements of localized swelling along fiber lengths caused by refining supported this finding. Based on these findings, it was postulated that force transmittal through fiber networks occurred primarily at fiber crossings. The small size of fiber diameters relative to fiber lengths accounts for the low probability of a successful refining event at each impact. This probability, and the probability of fibers being captured and impacted during passage through a refiner, account for the need for multiple bar crossings to refine pulps.
Journal articles
Toward environmental resilience in pulp and paper manufacturing: Water consumption and carbon dioxide emission reductions, TAPPI Journal September 2025
ABSTRACT: Pulp and paper manufacturing is a water- and energy-intensive industrial sector, necessitating improvement of its operational efficiency, as well as reduction of emissions to the maximum extent possible. This review focuses on the reduction of water consumption and carbon dioxide (CO2) emissions that originate in the pulp and paper industry (PPI). First, process simulation and optimization techniques used for water consumption reduction are reviewed. Then, techno-economic analyses of solvent-based CO2 capture from PPI are discussed. Additionally, key actions are proposed for enhancing water consumption reduction and CO2 capture in PPI.
Journal articles
Magazine articles
Modeling of the energy of a smelt-water explosion in the recovery boiler dissolving tank, TAPPI Journal August 2020
ABSTRACT: The explosion energy generated as molten smelt droplets interact with water was evaluated as a function of smelt distribution, water temperature, and smelt temperature using a thermodynamic model. The results show that increasing smelt-to-water volume ratio and water temperature significantly increases the explosion energy, converting a larger proportion of the thermal energy of smelt into mechanical work. To reduce the chance of violent smelt-water explosions, it is important to: i) optimize the shatter jet design and operation to uniformly distribute the smelt over a large area in the dissolving tank; ii) avoid high green liquor temperature and ensure adequate liquor mixing; and iii) avoid upsets that may cause heavy smelt runoff or jellyroll smelt.
Journal articles
Magazine articles
Wheat straw as an alternative pulp fiber, TAPPI Journal January 2020
Author: Peter W. Hart | ABSTRACT: The desire to market sustainable packaging materials has led to an interest in the use of various fiber types as a raw material. It has been suggested that the use of annual crops for partial replacement of wood fiber would result in more sustainable products. Several life cycle analyses (LCA) have been performed to evaluate these claims. These LCAs provided conflicting and contradictory results because of the local conditions and the specific pulping processes investigated. Selected LCAs are reviewed and the underlying reasons for these conflicting results are analyzed.
Journal articles
Magazine articles
Critical parameters for tall oil separation I: The importance of ration of fatty acids to rosin acids, TAPPI Journal September 2019
ABSTRACT: Tall oil is a valuable byproduct in chemical pulping of wood, and its fractions have a large spectrum of applications as chemical precursors, detergents, and fuel. High recovery of tall oil is important for the economic and environmental profile of chemical pulp mills. The purpose of this study was to investigate critical parameters of tall oil separation from black liquor. To investigate this in a controlled way, we developed a model test system using a “synthetic” black liquor (active cooking chemicals OH- and HS- ions), a complete process for soap skimming, and determination of recovered tall oil based on solvent extraction and colorimetric analysis, with good reproducibility. We used the developed system to study the effect of the ratio of fatty acids to rosin acids on tall oil separation. When high amounts of rosin acids were present, tall oil recovery was low, while high content of fatty acids above 60% significantly promoted tall oil separation. Therefore, manipulating the content of fatty acids in black liquor before the soap skimming step can significantly affect the tall oil solubility, and hence its separation. The findings open up chemical ways to improve the tall oil yield.
Journal articles
Magazine articles
Factors affecting deposit formation in foul condensate stripping systems, TAPPI Journal June 2024
ABSTRACT: In kraft pulp mills, foul condensates are often steam-stripped to produce clean condensate for use as process water. The formation of organic deposits in the stripped condensate is a common problem. A systematic study was conducted to examine the deposit composition and the most likely operating parameters responsible for stripped condensate contamination experienced at a kraft mill in Brazil. Daily averaged data of 170 operating parameters over a 15-month period were analyzed by means of multivariate discriminant analysis and random forest classification analysis. The results showed that the deposit formation is related to high temperature, pressure, and dry solids operations in various evaporator effects. These conditions, combined with the poor demisting efficiency in these effects, may have increased black liquor carryover mist in the vapor. Deposit formation also appeared to be related to increased throughput of the foul condensate stripping system and increased pressure in the stripper. Results of Fourier transform infrared spectroscopy (FTIR) and pyrolysis-gas chromatography mass spectrometry (Py-GCMS) analyses show that the deposit consists of mostly organic matter that likely originated from wood extractives and lignin.