Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 211–220 of 298 results (Duration : 0.01 seconds)
Journal articles
Magazine articles
Open Access
Control of malodorous gases emission from wet-end white water with hydrogen peroxide, TAPPI Journal October 2021

ABSTRACT: White water is highly recycled in the papermaking process so that its quality is easily deteriorated, thus producing lots of malodorous gases that are extremely harmful to human health and the environment. In this paper, the effect of hydrogen peroxide (H2O2) on the control of malodorous gases released from white water was investigated. The results showed that the released amount of total volatile organic compounds (TVOC) decreased gradually with the increase of H2O2 dosage. Specifically, the TVOC emission reached the minimum as the H2O2 dosage was 1.5 mmol/L, and meanwhile, the hydrogen sulfide (H2S) and ammonia (NH3) were almost completely removed. It was also found that pH had little effect on the release of TVOC as H2O2 was added, but it evidently affect-ed the release of H2S and NH3. When the pH value of the white water was changed to 4.0 or 9.0, the emission of TVOC decreased slightly, while both H2S and NH3 were completely removed in both cases. The ferrous ions (Fe2+) and the copper ions (Cu2+) were found to promote the generation of hydroxyl radicals (HOœ) out of H2O2, enhancing its inhibition on the release of malodorous gases from white water. The Fe2+/H2O2 system and Cu2+/H2O2 system exhibited similar efficiency in inhibiting the TVOC releasing, whereas the Cu2+/H2O2 system showed better perfor-mance in removing H2S and NH3.

Journal articles
Magazine articles
Open Access
Sulfur makeup in an unbleached kraft pulp mill, TAPPI Journal August 2024

ABSTRACT: Sodium sesquisulfate or “sesqui” (Na3H(SO4)2) is a by-product of chlorine dioxide production at kraft pulp mills. It is typically used for sodium and sulfur makeup in the liquor loop. Mondi Hinton Inc. (MHI) in Hinton, AB, Canada, was converting from bleached to unbleached kraft pulp production and was thus losing this source of makeup. The only option that was readily available as a substitute was sodium hydrosulfide (NaHS), which was cost prohibitive. Other options such as sodium sulfate (Na2SO4), emulsified sulfur, sulfuric acid (H2SO4), and sodium bisulfite (NaHSO3) were compared. The mill concluded that pelletized sulfur plus sodium hydroxide or “caustic soda” (NaOH) was the best option. Laboratory-scale experiments showed that pelletized sulfur dissolved in white liquor (WL). A mill-scale trial revealed that pelletized sulfur added to a causticizer had no adverse impacts on the downstream pressure filters or kiln operation. The sulfur reacted to produce polysulfide upstream of the WL storage tank, giving the liquor an orange hue. This polysulfide appeared to partially degrade into thiosulfate before being fed to the digester. The heavy black liquor (HBL) sulfur:sodium (S:Na) ratio did not change significantly, even though the sulfur/soda addition location was upstream of the original one. In addition, other properties such as liquor heating value and elemental analysis did not significantly change. Due to polysulfide/thiosulfate concentration in the white liquor, it was determined that the carbon steel equipment was at risk for corrosion. During the annual turnaround that occurred eight months after the addition of sulfur was started, the wash zone of the digester showed no signs of thinning/damage. The mill has been running exclusively with pelletized sulfur for 22 months (as of August 2024), realizing significant cost savings compared to the use of NaHS or other sulfur/soda addition options.

Journal articles
Magazine articles
Open Access
The role of hornification in the deterioration mechanism of physical properties of unrefined eucalyptus fibers during paper recycling, TAPPI Journal February 2024

ABSTRACT: Physical properties of cellulosic paper deteriorate significantly during paper recycling, which hinders the sustainable development of the paper industry. This work investigates the property deterioration mechanism and the role of hornification in the recycling process of unrefined eucalyptus fibers. The results showed that during the recycling process, the hornification gradually deepened, the fiber width gradually decreased, and the physical properties of the paper also gradually decreased. After five cycles of reuse, the relative bonding area decreased by 17.6%, while the relative bonding force decreased by 1.8%. Further results indicated that the physical property deterioration of the paper was closely related to the decrease of fiber bonding area. The fiber bonding area decreased linearly with the reduction of re-swollen fiber width during paper recycling. Re-swollen fiber width was closely related to the hornification. Hornification mainly reduces the bonding area of unrefined eucalyptus fiber rather than the bonding force. The work elucidates the role of hornification in the recycling process of unrefined eucalyptus fibers and the deterioration mechanism of paper physical properties, which will be helpful to control the property deterioration of paper and achieve a longer life cycle.

Journal articles
Magazine articles
Open Access
Fundamental molecular characterization and comparison of the O, D0, and E stage effluents from hardwood pulp bleaching, TAPPI Journal 2019

ABSTRACT: The present study characterized effluents from the O, D0, and E stages using nuclear magnetic reso-nance (NMR) and gel permeation chromatography (GPC) techniques to better understand the chemical nature of the dissolved organics formed from the bleaching of a high-yield hardwood kraft pulp. Understanding the structures and molecular weight distribution of these organics is the first step in developing methods to mitigate these contam-inates in the discharged effluents. The results indicated that the molecular weight distribution (MWD) of the dis-solved organics from oxygen delignification effluent is broader than those from D0 and E stage effluents. In addition, the O stage filtrate contained considerable amounts of lignin and xylan fragments, which showed its efficiency in removing such materials. The effluent from the D0 stage contained a lower amount of high molecular weight frag-ments and a higher amount of low molecular weight fragments versus the O-stage filtrate. Aromatic structures were nearly absent in the D0 stage filtrate, but the degraded organic material, presumably from oxidized lignin, contained olefinic (C=C) and carbonyl (C=O) functional groups. Furthermore, higher molecular weight fragments were detected in the E-stage effluent, presumably due to the extensive solubilization and removal of the oxidized lignin generated from the D0 pulp.

Journal articles
Magazine articles
Open Access
Use of fines-enriched chemical pulp to increase CTMP strength, TAPPI Journal April 2021

ABSTRACT: In this study, fines-enriched pulp (FE-pulp)—the fine fraction of highly-refined kraft pulp—was benchmarked against highly-refined kraft pulp (HRK-pulp) as a strength agent in eucalyptus chemithermomechanical pulp (CTMP). Both the FE-pulp and the HRK-pulp were produced from unbleached softwood kraft pulp, and equal amounts of those strength agents were added to the original CTMP, as well as to washed CTMP, where most of the fines had been removed. The effects of the added strength agents were evaluated with laboratory handsheets.The FE-pulp proved to be twice as effective as HRK-pulp. Both HRK-pulp and FE-pulp increased the strength of the CTMP handsheets. The bulk of the handsheets decreased, however, as well as the drainability. The addition of 5% FE-pulp resulted in the same strength increase as an addition of 10% HRK-pulp, as well as the same decrease in bulk and CSF. For the handsheets of washed CTMP, the strengths were not measurable; the CTMP lost the sheet strength when the CTMP-fines content was reduced through washing. The reduced strength properties were compensated for by the addition of chemical pulp fines that proved to be an efficient strength agent. The addition of 5% FE-pulp restored the strength values, and at a higher bulk and higher drainability.

Journal articles
Magazine articles
Open Access
Kraft pulp viscosity as a predictor of paper strength: Its uses and abuses, TAPPI Journal October 2023

ABSTRACT: For bleached kraft pulps, two factors govern paper strength: the individual fiber strength, and the bond strength that adheres the individual fibers together in the paper matrix. Inherent fiber strength is related to the length of the carbohydrate polymers, also known as the degree of polymerization (DP). Average DP (DP) is inferred by performing pulp viscosity measurements. Under certain circumstances during kraft pulping and bleaching, the average polymer lengths can be shortened, resulting in lower pulp viscosity, and may indicate fiber damage. Fiber damage typically manifests itself as a reduction in tear strength for well-bonded handsheets.This paper will review the literature on how pulp viscosity can predict paper/fiber strength and how it can be used as a diagnostic tool. It can be a means to monitor pulp quality during pulping and bleaching, as well as to alert when such operations approach a critical threshold. However, viscosity losses must be carefully and judiciously analyzed. Like most diagnostic tools, viscosity measurements can be misused and abused, which can lead to incorrect inferences about intrinsic fiber strength. This review will also cover these misuses. The overall goal is to provide the papermaker a better understanding of what pulp viscosity is, how it correlates to potential sheet strength, and what its limitations are. It will be illustrated that when pulp viscosity drops below a critical value, it will indicate an appreciable deterioration in the paper’s tear and tensile strength.

Journal articles
Magazine articles
Open Access
Wheat straw as an alternative pulp fiber, TAPPI Journal December 2024

Author: Peter W. Hart | TAPPI J. 19(1): 41(2020) - ABSTRACT: The desire to market sustainable packaging materials has led to an interest in the use of various fiber types as a raw material. It has been suggested that the use of annual crops for partial replacement of wood fiber would result in more sustainable products. Several life cycle analyses (LCA) have been performed to evaluate these claims. These LCAs provided conflicting and contradictory results because of the local conditions and the specific pulping processes investigated. Selected LCAs are reviewed and the underlying reasons for these conflicting results are analyzed.

Journal articles
Magazine articles
Open Access
Fate of phosphorus in the recovery cycle of the kraft pulping process, TAPPI Journal March 2020

ABSTRACT: The accumulation of nonprocess elements in the recovery cycle is a common problem for kraft pulp mills trying to reduce their water closure or to utilize biofuels in their lime kiln. Nonprocess elements such as magnesium (Mg), manganese (Mn), silicon (Si), aluminum (Al), and phosphorus (P) enter the recovery cycle via wood, make-up chemicals, lime rock, biofuels, and process water. The main purge point for these elements is green liquor dregs and lime mud. If not purged, these elements can cause operational problems for the mill. Phosphorus reacts with calcium oxide (CaO) in the lime during slaking; as a result, part of the lime is unavailable for slaking reactions. The first part of this project, through laboratory work, identified rhenanite (NaCa(PO4)) as the form of P in the lime cycle and showed the negative effect of P on the availability of the lime. The second part of this project involved field studies and performing a mass balance for P at a Canadian kraft pulp mill.

Journal articles
Magazine articles
Open Access
Synthesis of filtrate reducer from biogas residue and its application in drilling fluid, TAPPI Journal March 2020

ABSTRACT: Biogas residues (BR) containing cellulose and lignin are produced with the rapid development of biogas engineering. BR can be used to prepare the filtrate reducer of water-based drilling fluid in oilfields by chemical modification. BR from anaerobically fermenting grain stillage was alkalized and etherified by caustic soda and chloroacetic acid to prepare filtrate reducer, which was named as FBR. The long-chain crystalline polysaccharides were selected as dispersing agents (DA), and the water-soluble silicate was used as the cross-linking agent. After the hot rolling of FBR in saturated saltwater base mud for 16 h at 120°C, the filtration loss was increased from 7.20 mL/30 min before aging to 8.80 mL/30 min after aging. Compared with the commercial filtrate reducers, FBR had better tolerance to high temperature and salt, and lower cost.

Journal articles
Magazine articles
Open Access
Exergy and sensibility analysis of each individual effect in a kraft multiple effect evaporator, TAPPI Journal October 2019

ABSTRACT: The multiple effect evaporator (MEE) is an energy intensive step in the kraft pulping process. The exergetic analysis can be useful for locating irreversibilities in the process and pointing out which equipment is less efficient, and it could also be the object of optimization studies. In the present work, each evaporator of a real kraft system has been individually described using mass balance and thermodynamics principles (the first and the second laws). Real data from a kraft MEE were collected from a Brazilian plant and were used for the estimation of heat transfer coefficients in a nonlinear optimization problem, as well as for the validation of the model. An exergetic analysis was made for each effect individually, which resulted in effects 1A and 1B being the least efficient, and therefore having the greatest potential for improvement. A sensibility analysis was also performed, showing that steam temperature and liquor input flow rate are sensible parameters.