Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 361–370 of 559 results (Duration : 0.01 seconds)
Journal articles
Magazine articles
Open Access
A fast and non-destructive alternative to the burnout method for paperboard quality inspections using phase-contrast X-ray imaging, TAPPI Journal February 2023

ABSTRACT: An X-ray based quality inspection method for paperboard was implemented and tested as a fast and non-destructive alternative to the burnout method. An argument against X-ray imaging for inspection of paper and paperboard has been that X-ray absorption is low in paper. To overcome this limitation, we used phase-contrast X-ray imaging (PCXI), which gives higher contrast than conventional attenuation-based imaging for low-absorbing materials such as paper. The suggested PCXI method was applied to previously prepared and quality rated samples using the burnout method. A strong similarity between the burnout images and the PCXI images was observed. In conclusion, further development of the phase-contrast X-ray method would provide an interesting option for replacing or complementing the standard burnout method.

Journal articles
Magazine articles
Open Access
Co-pulping of Trewia nudiflora and Trema orientalis, TAPPI Journal June 2023

ABSTRACT: Trewia nudiflora, a fast-growing species, was evaluated as a pulpwood. The a-cellulose content of this species was 40.4% with a Klason lignin of 21.5%. It was characterized by shorter fibers with a thin cell wall. The pulp yield was 40% with a kappa number of 16 at the conditions of 18% active alkali charge and 30% sulfidity for 2 h cooking at 170°C. T. nudiflora was similar to Trema orientalis in anatomical, morphological, and chemical composition; therefore, mixed chips at a 50:50 mixture ratio were cooked under optimum conditions. The pulp yield of mixed chip cooking was 45.4% with a kappa number of 19.4. The tensile and tear index of T. nudiflora pulps were 64.8 Nœm/g and 11.5 kPaœm2/g at 35 °SR, respectively. The mixed chips, T. nudiflora, and T. orientalis pulps showed above 81% brightness when bleached by D0(EP)D1 sequence using 20 kg chlorine dioxide (ClO2)/ton of pulp.

Journal articles
Magazine articles
Open Access
On the nominal transverse shear strai to characterize the severity of creasing, TAPPI JOURNAL April 2018

On the nominal transverse shear strai to characterize the severity of creasing, TAPPI JOURNAL April 2018

Journal articles
Magazine articles
Open Access
Effect of pulper consistency on stickies size distribution, TAPPI JOURNAL August 2018

Effect of pulper consistency on stickies size distribution, TAPPI JOURNAL August 2018

Journal articles
Magazine articles
Open Access
Convolutional neural networks enhance pyrolysis gas chromatography mass spectrometry identification of coated papers, TAPPI Journal August 2024

ABSTRACT: In the evolving paper industry, accurate identification of coated paper components is essential for sustainability and recycling efforts. This study employed pyrolysis-gas chromatography mass spectrometry (Py-GCMS) to examine six types of coated paper. A key finding was the minimal interference of the paper substrate with the pyrolysis products of the coatings, ensuring reliable analysis. A one-dimensional convolutional neural network (1D-CNN) was employed to process the extracted ion chromatograms directly, simplifying the workflow and achieving a predictive accuracy of 95.2% in identifying different coating compositions. Additionally, the study high-lighted the importance of selecting an optimal pyrolysis temperature for effective feature extraction in machine learning models. Specific markers for coated papers, including polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polybutylene succinate (PBS), polylactic acid (PLA), and waterborne polyacrylates (WP), were identified. This research demonstrates a novel approach to coated paper identification by combining Py-GCMS with machine learning, offering a foundation for further studies in product quality and environmental impact.

Journal articles
Magazine articles
Open Access
Effect of high sulfate content on viscosity of recovery boiler molten smelt, TAPPI Journal March 2024

ABSTRACT: A systematic study was conducted to examine the effect of high sulfate content on the freezing temperature of molten smelt and how this may contribute to the formation of viscous jellyroll smelt in recovery boilers. The results show that even for recovery boilers with a smelt reduction as low as 70%, the sulfate content in smelt has no or little effect on smelt freezing temperature, and hence, on molten smelt fluidity. The perceived adverse effect of high sulfate content on smelt fluidity and on jellyroll smelt formation comes from the high sulfate content in deposits that have fallen from the upper furnace. Fallen deposits may or may not form jellyroll smelt, depending on whether or not they can melt and be well-mixed with molten smelt by the time they reach the smelt spouts. It is not the high sulfate content in smelt resulting from the low smelt reduction efficiency that makes molten smelt viscous and forms jellyroll smelt, but rather, it is the incomplete melting of fallen deposits that results in one of the proposed mechanisms for jellyroll smelt formation.

Journal articles
Magazine articles
Open Access
Effects of different soda loss measurement techniques on brownstock quality, TAPPI Journal July 2024

ABSTRACT: The efficiency of the kraft recovery plant, bleaching process, and paper machine are affected when black liquor carryover from the brownstock washers is not controlled well. Measuring soda loss within a mill can vary from using conductivity, either in-situ or with a lab sample of black liquor filtrate squeezed from the last stage washer, to measuring absolute sodium content with a lab sodium specific ion probe or spectrophotometer. While measuring conductivity has value in tracking trends in black liquor losses, it is not an acceptable method in reporting losses in absolute units, typically in lb/ton of pulp. This is further complicated when trying to benchmark soda loss performance across a fleet of mills with multiple washer lines. Not only do the testing methods vary, but the amount of bound soda on high kappa pulps can be significant. This variability creates inconsistent results, and studies are needed to understand the effect of different testing methods on the pulp quality. In this study, soda loss is expressed as sodium sulfate (Na2SO4). Four different methods to measure soda content in pulp off commercial brownstock washers were studied: full digestion (FD), washing soaking overnight and washing (WSW), soaking in boiling water and stirring 10-min (SW-10), and squeeze-no wash (Sq). Total, washable, and bound sodium sulfate calculations were determined for each soda content measuring technique using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Results showed bound and washable sodium sulfate amounts significantly depend on which soda measurement technique was used. In addition, the soda results were correlated with the pulp kappa numbers. As the kappa number increases, bound soda increases, regardless of the soda measurement method used. Impacts of high sodium sulfate in brownstock are also discussed.

Journal articles
Magazine articles
Open Access
The Shendye-Fleming OBA Index for paper and paperboard, TAPPI Journal March 2022

ABSTRACT: We are proposing a new one-dimensional scale to calculate the effects of optical brightening agents (OBA) on the bluish appearance of paper. This index is separate from brightness and whiteness indices.In the paper industry, one-dimensional scales are widely used for determining optical properties of paper and paperboard. Whiteness, tint, brightness, yellowness, and opacity are the most common optical properties of paper and paperboard. Most of the papers have a blue cast generated by addition of OBA or blue dyes. This blue cast is given because of the human perception that bluer is whiter, up to a certain limit. To quantify this effect, it is necessary to determine how much blue cast paper and paperboard have. As the printing industry follows the ISO 3664 Standard for viewing, which has a D50 light source, this also plays a very important role in showing a blue cast. Color perception is based on light source and light reflected from an object. The ultraviolet (UV) component in D50 interacts with OBA to provide a reflection in the blue region of the visible spectrum. Use of a UV blocking filter results in measurements without the effect of emission in the blue region. This difference is used in determining the OBA effect in the visible range of the paper. This equation is known as the Shendye-Fleming OBA Index.

Journal articles
Magazine articles
Open Access
A guide to eliminating baggy webs, TAPPI Journal June 2021

ABSTRACT: Slack or baggy webs can cause misregistration, wrinkles, and breaks in printing and converting operations. Bagginess appears as non-uniform tautness in the cross direction (CD) of a paper web. The underlying cause is uneven CD tension profiles, for which there are few remedies once the paper is made. Precision measurements of CD tension profiles combined with trials on commercial paper machines have shown that uniform CD distribution of moisture, basis weight, and caliper profiles at the reel are key to avoiding bagginess. However, the most important but infrequently measured factor is the CD moisture profile entering the dryer section. Wetter areas entering the dryers are permanently elongated more than dry areas, leading to greater slackness in the finished paper. In storage, wound-in tension can amplify baggy streaks in paper near the surface of a roll and adjacent to the core. Unwrapped or poorly wrapped rolls exposed to low humidity environments may have baggy centers caused by moisture loss from the roll edges.All of the factors that impact bagginess have been incorporated in a mathematical model that was used to interpret the observations from commercial trials and can be used as a guide to solve future problems.

Journal articles
Magazine articles
Open Access
Understanding extensibility of paper: Role of fiber elongation and fiber bonding, TAPPI Journal March 2020

ABSTRACT: The tensile tests of individual bleached softwood kraft pulp fibers and sheets, as well as the micro-mechanical simulation of the fiber network, suggest that only a part of the elongation potential of individual fibers is utilized in the elongation of the sheet. The stress-strain curves of two actual individual pulp fibers and one mimicked classic stress-strain behavior of fiber were applied to a micromechanical simulation of random fiber networks. Both the experimental results and the micromechanical simulations indicated that fiber bonding has an important role not only in determining the strength but also the elongation of fiber networks. Additionally, the results indicate that the shape of the stress-strain curve of individual pulp fibers may have a significant influence on the shape of the stress-strain curve of a paper sheet. A large increase in elongation and strength of paper can be reached only by strengthening fiber-fiber bonding, as demonstrated by the experimental handsheets containing starch and cellulose microfibrils and by the micromechanical simulations. The key conclusion related to this investigation was that simulated uniform inter-fiber bond strength does not influence the shape of the stress-strain curve of the fiber network until the bonds fail, whereas the number of bonds has an influence on the activation of the fiber network and on the shape of the whole stress-strain curve.