Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 531–540 of 541 results (Duration : 0.026 seconds)
Journal articles
Magazine articles
Subscription Access
Gas dispersion in the oxygen delignification process, TAPPI Journal May 2021

ABSTRACT: There has been very little knowledge about the state of gas dispersion in the oxygen delignification process, even though this has a major impact on the performance of the reactor. This paper presents a new continu-ous inline method for measuring oxygen bubble size distribution in the reactor, as well as results from studies con-ducted in softwood and hardwood lines. This new measurement worked well, and new information about oxygen bubble size, as well as how different reactor conditions affected the distribution, was obtained. For example:œ In the softwood line, the mean volume-weighted bubble size was about 0.1 mm, whereas in the hardwood line, this size was almost 10 times higher. For both lines, there was considerable variation in the measured bubble size over the long term.œ For both lines, an increase in mixer rotation speed caused a discernible decrease in the bubble size, and an increase in oxygen charge caused a discernible increase in the bubble size.œ In the softwood line, no coalescence of the bubbles in the reactor was observed, but in the hardwood line, some coalescence of the larger bubbles occurred.œ In the test conducted in the hardwood line, the use of brownstock washer defoamer caused a discernible increase in oxygen bubble size.œ In the hardwood line, reactor pressure had a noticeable effect on the amount of delignification, which indicated that improving mass transfer of oxygen (e.g., by decreasing the oxygen bubble size, in this case) should also have an increasing effect on the delignification.

Journal articles
Magazine articles
Subscription Access
The role of gas dispersion in the oxygen delignification process, TAPPI Journal May 2021

ABSTRACT: Oxygen delignification is an essential part of the pulp production process. Delignification occurs with the aid of alkali and dissolved oxygen. Dissolved oxygen is obtained by dispersing oxygen gas into the pulp suspension by using efficient mixers. Little is known about the state of oxygen gas dispersion and its effect on oxygen delignification kinetics and efficiency. This paper will present the results for the effect of gas bubble size on the performance of oxygen delignification. The results are mainly based on detailed studies made in a Finnish hardwood mill where the oxygen bubble size distribution could be altered at the feed of the reactor. An essential aspect of these studies was the use of a new continuous inline gas bubble size measurement system to simultaneously determine the bubble size distribution at the feed and top of the reactor. Information about oxygen consumption in the reactor could also be obtained through the bubble size measurements. Accordingly, these studies quantify the effect of oxygen bubble size on the kappa reduction of the pulp. The effect of different chemical factors on the oxygen bubble size is also studied.Finally, the relationship between the gas bubble size and the liquid phase oxygen mass transfer coefficient (kLa) is presented. This connects the bubble size to the kappa reduction rate. Based on the presented modeling approach and the evaluation of practical factors that are not taken into account in the modeling, it was concluded that the volumetric average oxygen bubble size should preferably be smaller than 0.2 mm in practice.The information obtained with the new gas bubble size measurement system and the presented modeling approach give a very new basis for understanding, monitoring, adjusting, and designing oxygen delignification processes.

Books
Black Liquor Evaporation Now Available from TAPPI Press

Explores the science, technology, and practice of successfully concentrating black liquor from weak liquor to firing concentrations

Journal articles
Magazine articles
Subscription Access
Addressing production bottlenecks and brownstock washer optimization via a membrane concentration system, TAPPI Journal July 2021

ABSTRACT: Advancements in membrane systems indicate that they will soon be robust enough to concentrate weak black liquor. To date, the economic impact of membrane systems on brownstock washing in kraft mills has not been studied and is necessary to understand the viability of these emerging systems and their best utilization.This study investigated the savings that a membrane system can generate related to brownstock washing. We found that evaporation costs are the primary barrier for mills seeking to increase wash water usage. Without these additional evaporation costs, we showed that our hypothetical 1000 tons/day bleached and brown pulp mills can achieve annual savings of over $1.0 MM when operating at higher dilution factors and fixed pulp production rate. We then investigated the impact of increasing pulp production on mills limited by their equipment. In washer-limited mill examples, we calculated that membrane systems can reduce the annual operating cost for a 7% production increase by 91%. Similarly, in evaporator-limited mill examples, membrane systems can reduce the annual operating cost for a 7% production increase by 86%. These results indicated that membrane systems make a production increase significantly more feasible for these equipment-limited mills.

Journal articles
Magazine articles
Subscription Access
Production of antimicrobial paper using nanosilver, nanocellulose, and chitosan from a coronavirus perspective, TAPPI Journal July 2021

ABSTRACT: The pulp and paper industry has an opportunity to play a vital role in breaking the spread of the COVID-19 pandemic through production that supports widespread use of antimicrobial paper. This paper provides a brief review of paper and paper-related industries, such as those producing relevant additives, and R&D organizations that are actively engaged in developing antimicrobial papers. The focus here is on the potential of three nano-additives for use in production of antimicrobial papers that combat coronavirus: nanosilver, nanocellulose, and chitosan. Various recent developments in relevant areas and concepts underlining the fight against coronavirus are also covered, as are related terms and concepts.

Conference papers
Improving Organic Removal in Brown Stock Washing Process, 20

Improving Organic Removal in Brown Stock Washing Process, 2017PEERS

Journal articles
Magazine articles
Open Access
Online measurement of bulk, tensile, brightness, and ovendry content of bleached chemithermomechanical pulp using visible and near infrared spectroscopy, TAPPI JOURNAL April 2018

Online measurement of bulk, tensile, brightness, and ovendry content of bleached chemithermomechanical pulp using visible and near infrared spectroscopy, TAPPI JOURNAL April 2018

Conference papers
How A Major Pulp & Paper Manufacturer Reduced MRO Inventory Using RCM Principles, 20PEERS Conference

How A Major Pulp & Paper Manufacturer Reduced MRO Inventory Using RCM Principles, 20PEERS Conference

Conference papers
Development and Application of an Object-Oriented Simulation Tool for Kraft Recovery Processes, 2018 PEERS

Development and Application of an Object-Oriented Simulation Tool for Kraft Recovery Processes, 2018 PEERS

Journal articles
Magazine articles
Subscription Access
Boiler retrofit improves efficiency and increases biomass firing rates, TAPPI Journal March 2021

ABSTRACT: Domtar’s fluff pulp mill in Plymouth, NC, USA, operates two biomass/hog fuel fired boilers (HFBs). For energy consolidation and reliability improvement, Domtar wanted to decommission the No. 1 HFB and refurbish/retrofit the No. 2 HFB. The No. 2 HFB was designed to burn pulverized coal and/or biomass on a traveling grate. The steaming capacity was 500,000 lb/h from coal and 400,000 lb/h from biomass. However, it had never sustained this design biomass steaming rate. As the sole power boiler, the No. 2 HFB would need to sustain 400,000 lb/h of biomass steam during peak loads. An extensive evaluation by a combustion and boiler technologies supplier was undertaken. The evaluation involved field testing, analysis, and computational fluid dynamics (CFD) modeling, and it identified several bottle-necks and deficiencies to achieving the No. 2 HFB’s biomass steam goal. These bottlenecks included an inadequate combustion system; insufficient heat capture; excessive combustion air temperature; inadequate sweetwater con-denser (SWC) capacity; and limited induced draft fan capacity.To address the identified deficiencies, various upgrades were engineered and implemented. These upgrades included modern pneumatic fuel distributors; a modern sidewall, interlaced overfire air (OFA) system; a new, larger economizer; modified feedwater piping to increase SWC capacity; replacement of the scrubber with a dry electrostatic precipitator; and upgraded boiler controls.With the deployment of these upgrades, the No. 2 HFB achieved the targeted biomass steaming rate of 400,000 lb/h, along with lowered stack gas and combustion air temperatures. All mandated emissions limit tests at 500,000 lb/h of steam with 400,000 lb/h of biomass steam were passed, and Domtar reports a 10% reduction in fuel firing rates, which represents significant fuel savings. In addition, the mill was able to decommission the No. 1 HFB, which has substantially lowered operating and maintenance costs.