High Yield, High Value
Biorefining for Cellulosic Ethanol

Michael Rushton
Lignol Energy Corp
Vancouver, BC
Biorefineries for Lignocellulosic Biomass

- **NREL Definition of Biorefinery**

 “A facility that integrates biomass conversion processes and equipment to produce fuel, power and chemicals from biomass”.¹

Pulp mills are biorefineries

- Chemical pulp mills are simple biorefineries
 - Most produce chemicals (pulp) and steam and power (from liquor burning in a recovery boiler)
 - Some produce additional chemicals: tall oil, turpentine, kraft lignin, lignosulfonates, even ethanol from hemicellulose sugars (sulfite)
 - Primary function is to produce pulp and paper not transportation fuels
The “New” Biorefinery

- New biorefinery technologies focus on production of ethanol and other sugar platform chemicals from cellulose and hemicellulose fractions of lignocellulosic material
- New biorefineries tap more deeply into chemical values in woody biomass:
 - Three major polymers that are physically integrated and chemically bonded
 - Cellulose (~35% to 50%)
 - Hemicellulose (~25% to 35%)
 - Lignin (~12% to 30%)
- Biorefineries require a pretreatment step to separate wood into components, followed by bioconversion steps to convert cellulose to sugars and sugars to ethanol
Biorefinery pretreatment options

- Pretreatment options
 - steam explosion, with or without acid pretreatment
 - mechanical disintegration
 - acid treatment
 - organosolv treatment
- Lignol’s modified organosolv delignification removes the lignin from the fibre:
 - Lignin - High value byproduct vs. disposal as fuel
- This process originates from Repap/Alcell organosolv pulp process
The Lignol Biorefinery Process

- A solvent-based organosolv delignification stage, enzymatic saccharification of the cellulose, fermentation to produce fuel grade ethanol
- Recovery of a very pure form of lignin
 - Less than 0.5% sugar
 - Less than 0.1% ash
 - Approximately 3% moisture
 - Less than 0.3 ppm sulfur
 - Very low water solubility
 - Number Average Mol. Wt., approximately 850 daltons
- Recovery of furfural, extractives and other co-products
Lignol acquired technology developed by General Electric and Repap (Alcell)

GE
- Wood to ethanol pilot plant

Alcell
- Wood pulp production at industrial scale
- Markets for novel “High Purity Lignin” (HPL™) established
Optimized for Superior Economic Returns

Hardwoods
Softwoods
Ag Residues

Lignol
Solvent
Process

Lignin

Specialty
Chemicals

8-12% Alcohol

Sach & Ferm

Distillation to Ethanol

Enzymes Yeast Cocktail
Lignocellulosic Biomass (Wood, Straw, Stover, etc) → Lignol Solvent Delignification → Black Liquor → Lignin Extraction → Yellow Liquor → Distillation → Stillage → Evaporation → Concentrate → Sugar Separation → Sugars → Fermentation → Solids → Cellulose → Enzymes, Yeast → Saccharification/Fermentation Distillation → Products:

- Ethanol
- Lignin
- Furfural
- Extractives
- Lignin
- Acetic acid
- Xylose
- Ethanol
- CO₂
Some Commercial Applications for Lignol Lignin

Chemical value ~ 10x Fuel value
HPL™ – Some demonstrated applications

- PF resin and wood adhesive substitute
- Printed circuit board encapsulating resins
- Foundry resins and molding compounds
- Degradable plastic films, coatings
- Friction materials, green strength binders, organic particles
- Antioxidants in rubber, lubricants, feed additives
- Rubber tackifiers
- Renewable surfactants; concrete admixtures, air-entrainers, super-plasticizers
- Carbon fibre and activated carbon production
- Animal feed applications
Potential Feedstocks

- Hardwoods
- Softwoods
- Chips, residues, sawdust
- Annual fibres
- Agricultural residues
- Mixed or campaigned feeds
Process Performance

• Yields of ethanol and lignin depend on feedstock and operating and product targets
• Range of performance parameters:
 o Ethanol yield: 150-300 litres/tonne OD feed
 o Lignin yield : 130-200 kg/tonne
Economically Sustainable at Small Scale

- Efficient ethanol production
 - Lower enzyme requirements than other cellulose to ethanol technologies; very high yields from cellulose
 - Better pre-treatment leads to lower capital and operating costs

- Multiple co-product revenue streams

- Sited at forest industry facilities with infrastructure, utilities and feedstock supply
Potential Markets for Lignol Lignin

- Global markets for known applications - US$2 billion
 International Lignin Institute, Eurolignin Network Project

- Examples
 - PF and other resins 3.5 million tonnes/yr
 - Surfactants, concrete, etc. 2.5 million tonnes/yr
Conclusions

- Lignol biorefineries offer an opportunity for the forest products industries to increase profits and leverage their existing resource base and infrastructure.

- The technology is compatible with existing operations, technology base and labor force.

- Industrial markets for the renewable chemicals and transportation fuels produced are large and robust with significant growth potential.

- Lignin revenues provide a major boost for biorefinery economics.