Table of Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>4 Fibre Suspensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Phenomenology and Structure of Paper</td>
<td>4.1 Introduction</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>4.2 Taylor Turbulence Lengths</td>
</tr>
<tr>
<td>1.2 Fibres</td>
<td>4.3 Statistical Packing of Space</td>
</tr>
<tr>
<td>1.3 Fibre Suspensions</td>
<td>4.4 Flocculation and Turbulence Models</td>
</tr>
<tr>
<td>1.4 Forming Paper</td>
<td>5 Paper Structure</td>
</tr>
<tr>
<td>1.5 Paper Structure</td>
<td>5.1 Introduction</td>
</tr>
<tr>
<td>1.6 Porous Properties</td>
<td>5.2 Random Paper</td>
</tr>
<tr>
<td>1.7 Mechanical Properties</td>
<td>5.3 Layered Structure</td>
</tr>
<tr>
<td>1.8 Optical Properties</td>
<td>5.4 Porous Structure</td>
</tr>
<tr>
<td>2 Statistical Background Material</td>
<td>5.5 Fibre Orientation</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>5.6 Variance of Local Grammage</td>
</tr>
<tr>
<td>2.2 Introduction to Statistical Parameters</td>
<td>5.7 Flocculated Paper</td>
</tr>
<tr>
<td>2.3 Common Probability Distributions</td>
<td>5.8 Fibre Spacing and Flocculation</td>
</tr>
<tr>
<td>2.4 Bernoulli and Binomial</td>
<td>5.9 Gaps in Flocculated Networks</td>
</tr>
<tr>
<td>2.5 Poisson Distribution</td>
<td>6 Deformation</td>
</tr>
<tr>
<td>2.6 Compound Poisson Distributions</td>
<td>6.3 Strain-Grammage Regression</td>
</tr>
<tr>
<td>2.7 Uniform Distribution</td>
<td>6.4 Estimating Errors</td>
</tr>
<tr>
<td>2.8 Negative Exponential Distribution</td>
<td>6.5 Estimating Networks Modulus</td>
</tr>
<tr>
<td>2.9 Gamma Distribution</td>
<td>6.6 Random Elastic Network</td>
</tr>
<tr>
<td>2.10 Normal Distribution</td>
<td>6.7 Regression Predictions</td>
</tr>
<tr>
<td>2.11 Lognormal Distribution</td>
<td>6.8 Random Model Modulus</td>
</tr>
<tr>
<td>2.12 Chi-Square Distribution</td>
<td>Prediction</td>
</tr>
<tr>
<td>3.9 Approximate Random Variance Functions</td>
<td>6.9 Segment Strain Distribution</td>
</tr>
<tr>
<td>3.10 Random Star Patterns</td>
<td></td>
</tr>
<tr>
<td>3.11 Three-Dimensional Networks</td>
<td></td>
</tr>
</tbody>
</table>
Subject Index

abrasion
absorption
additivity
alignment
along fibres
analogue signal
anemometry
anisotropic roll distributions
anisotropy
antiprojection
aperiodic crystals
aperture size
approximate random
variances
approximation to binomial
beer
Bernoilli distribution
Bessel function
between zone variance
bi-directional drainage
biaxial
binomial distribution
birch
blades
board
bond failures
bonded lengths
bonding disruption
bonding strength
bound water
cellulose-water
cellulose
Central Limit Theorem
charge analysis
chemical fixer
chemistry
chi-square distribution
clicking sounds
cloud chamber
clump models
clumping
clumps
clustering
clusters
coarseness
compression behaviour
compression gradient
compression
condenser paper
contact time
contagious process
continuous random variable
contrast
control loops
control
converting
cooperative smoothing
corona plasma
correlate
correlation
coupling
covariance between layers
coverage
crack tip
crack
creep rate
critical concentration
critical headbox fibre
concentration
crossing fibres
crossings
crowding number
crystalline cellulose
crystallites
curling
dandy mark
debris
decouple
defect tolerance
defects
deflection wave
deflection
degree of bonding
degrees of freedom
delaminated
density gradient
density of contacts
density of crossings
density
depolarization
mean pore diameter
mean pore radius
mean pore sizes
mean
mechanical behaviour
mechanical properties
mechanosorptive effect
micro-radiography
microfibrillar structure
microformation
micromechanics
micropores
model random network
mode
modulus prediction
modulus
moisture content
moisture effects
molecular model
molecular orientation
moment generating function
moment of distribution
monofibre layers
moving webs
multi-colour printing
multilayer
multiplanar model
multivariable models
negative exponential
distribution
negative exponential
network modulus
network strength
network
neural network simulators
neural network
newsprint
non-linearity
non-random
normal distribution
normal
nuclear magnetic resonance
number of crossings
optical properties
opaque
orientation anisotropy
orientation distribution
orientation
oxidative degradation
ozone
packing of space
packing problems
packing
pad compressibility
pad evolution
Page equation
pairs of points
paper forming
paper structure
paperboard
papermaker
Parallam
particle size distribution
pentration
perimeters of polygons
permeability
permeable
physical chemistry
physical models
pine
pipe flow
planar anisotrophy
planar random lines
plastic deformation energy
plastic deformation zone
plastic elongation
plug flow
polygonal voids
poer spectra
point autocorrelation
function
points
Poisson distribution
Poisson ratio for paper
Poisson
Polarized light
polarized
polyacrylamides
polygon areas
predictor
preferential fibre migration
preferential orientation
stochastic
strain increases thickness
strain prediction
strain-mass covariance
strain-reflectance effect
straining thermal-energy
stratified networks
strengthening
stripes
stroboscope
strong bag paper
strong flocs
structural inhomogeneity
sulphite pulp
superclumping
surface crushing
surface deformation
surface regions
surface tension
surface topography
swelling
symmetric distribution
table activity
Taylor lengths
Taylor turbulence lengths
tear tests
tensile fracture
tensile strain
tensile strength
textural
texture maps
thermal effects
thermal energy
thermal softening
thermodynamics of strain
thermographic imaging
thermorheological
thickening
thickness
three dimensions
three-dimensional structure
threshold concentration
turbulent viscosity
turbulent-like mixing
turbulent
two-stage process
ultrasonic
uncalendered
under-crossings
uniaxial tension
uniaxial
uniform distribution
uniform structures
variance of gap length
variance of gaps
variance of local strain
variances of areal density
variance
velocity field
velocity of sound
video imaging
viscoelastic
viscometers
viscous drag
visual perception
visual ranking
void
volumetric density
vortices
water jet slitting
water retention value
water-water
wavelength power spectrum
weaker regions
Weibull distribution
well-bonded paper
wet pressing
wet straining
wet strength
wetting time
whiteness
width
x-radiography
x-ray diffraction