The Mechanics of Web Handling
By David R. Roisum

1998, 222 pages, soft cover
Item Number: 0101R273
ISBN:089852346X

The Mechanics of Web Handling is the third book in Dave Roisum’s trilogy. The Mechanics of Winding and The Mechanics of Rollers are also available from TAPPI PRESS.

This unique book covers many aspects of web handling for manufacturing, converting, and printing. The book is applicable to any web including paper, film, foil, nonwovens, and textiles. The Mechanics of Web Handling is designed for product, process, and maintenance engineers responsible for web machinery. Through this valuable text, readers will better understand how to design and operate machinery to avoid wrinkles, web breaks, registration, guiding, and other types of costly web problems.

Fourteen chapters cover the following topics:

- Introduction to Web Handling
- Material Mechanics
- Dimension Control
- Tension and Tension Control
- Downweb Tension Variations
- Crossweb Tension Variations
- Temporal Tension Variations
- Guiding
- Nips
- Slitting
- Spreading
- Winding
- Wrinkling
- Web Breaks

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th></th>
<th>Introduction to Web Handling</th>
<th>8</th>
<th>Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>What is a web?</td>
<td>9</td>
<td>Material Matters</td>
</tr>
<tr>
<td>2</td>
<td>Web Materials and Industries</td>
<td>10</td>
<td>Tensile Test</td>
</tr>
<tr>
<td>3</td>
<td>Web Converting</td>
<td>11</td>
<td>Stress-Strain Curve</td>
</tr>
<tr>
<td>4</td>
<td>Web Handling</td>
<td>12</td>
<td>Brittle and Ductile Materials</td>
</tr>
<tr>
<td>5</td>
<td>Web Mechanics</td>
<td>13</td>
<td>Poisson's Ratio</td>
</tr>
<tr>
<td>6</td>
<td>Web Handling Opportunities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Other Web Handling Resources</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Mechanics of Web Handling
Table of Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Hygro-Thermal Expansion</td>
</tr>
<tr>
<td>15</td>
<td>Anisotropy</td>
</tr>
<tr>
<td>16</td>
<td>Hooke's Law</td>
</tr>
<tr>
<td>17</td>
<td>Creep and Stress Relaxation</td>
</tr>
<tr>
<td>18</td>
<td>Hysteresis, Memory and Set</td>
</tr>
<tr>
<td>19</td>
<td>Static Coefficient of Friction</td>
</tr>
<tr>
<td>20</td>
<td>Friction Complications</td>
</tr>
<tr>
<td>21</td>
<td>Test Frequency</td>
</tr>
<tr>
<td>22</td>
<td>Units</td>
</tr>
<tr>
<td>23</td>
<td>Bibliography</td>
</tr>
<tr>
<td>3</td>
<td>Dimensional Control</td>
</tr>
<tr>
<td>25</td>
<td>Product Geometry</td>
</tr>
<tr>
<td>26</td>
<td>Basis Weight</td>
</tr>
<tr>
<td>27</td>
<td>Caliper</td>
</tr>
<tr>
<td>28</td>
<td>Length</td>
</tr>
<tr>
<td>29</td>
<td>Width</td>
</tr>
<tr>
<td>30</td>
<td>Bulk ad Density</td>
</tr>
<tr>
<td>31</td>
<td>Roll Bulk</td>
</tr>
<tr>
<td>31</td>
<td>Roll Stresses and Bulk Loss</td>
</tr>
<tr>
<td>32</td>
<td>Roll Firmness</td>
</tr>
<tr>
<td>33</td>
<td>Roll Bulk and Firmness</td>
</tr>
<tr>
<td>34</td>
<td>Roll Weight</td>
</tr>
<tr>
<td>35</td>
<td>Registration</td>
</tr>
<tr>
<td>38</td>
<td>Wound Roll Width Variations</td>
</tr>
<tr>
<td>39</td>
<td>Wound Roll Offsets</td>
</tr>
<tr>
<td>40</td>
<td>Telescoping and Dishing</td>
</tr>
<tr>
<td>41</td>
<td>Length and Speed Measurement</td>
</tr>
<tr>
<td>42</td>
<td>Incremental Encoder Applications</td>
</tr>
<tr>
<td>43</td>
<td>Resolving Length Differences</td>
</tr>
<tr>
<td>44</td>
<td>Measuring Waste and Efficiency</td>
</tr>
<tr>
<td>47</td>
<td>Bibliography</td>
</tr>
<tr>
<td>4</td>
<td>Tension and Tension Control</td>
</tr>
<tr>
<td>49</td>
<td>Why Web Tension is Important</td>
</tr>
<tr>
<td>50</td>
<td>Choosing a Process Tension</td>
</tr>
<tr>
<td>51</td>
<td>Tension Exceptions</td>
</tr>
<tr>
<td>52</td>
<td>How Close Must Tension Be Held</td>
</tr>
<tr>
<td>53</td>
<td>Load Cell Tension</td>
</tr>
<tr>
<td>54</td>
<td>Load Cell Sizing Example</td>
</tr>
<tr>
<td>55</td>
<td>Other Load Cell Considerations</td>
</tr>
<tr>
<td>56</td>
<td>Dancer Controlled Tension</td>
</tr>
<tr>
<td>57</td>
<td>Dancer Design</td>
</tr>
<tr>
<td>58</td>
<td>Dancer Dynamics</td>
</tr>
<tr>
<td>59</td>
<td>Draw Control</td>
</tr>
<tr>
<td>60</td>
<td>Tension Variations in a Draw Zone</td>
</tr>
<tr>
<td>61</td>
<td>Catenary (Loop) Control</td>
</tr>
<tr>
<td>62</td>
<td>Tension from Motor Readings</td>
</tr>
<tr>
<td>63</td>
<td>Curent Control</td>
</tr>
<tr>
<td>64</td>
<td>Bibliography</td>
</tr>
<tr>
<td>5</td>
<td>Downweb Tension Variations</td>
</tr>
<tr>
<td>65</td>
<td>Tension Down Through a Machine</td>
</tr>
<tr>
<td>66</td>
<td>Roller Drag</td>
</tr>
<tr>
<td>68</td>
<td>Inertial Tension</td>
</tr>
<tr>
<td>70</td>
<td>Band Brake and Tension Difference</td>
</tr>
<tr>
<td>71</td>
<td>Load Cell or Dancer Sections</td>
</tr>
<tr>
<td>72</td>
<td>Draw or Speed Controlled Sections</td>
</tr>
<tr>
<td>73</td>
<td>Downweb Tension Summary</td>
</tr>
<tr>
<td>74</td>
<td>Bibliography</td>
</tr>
<tr>
<td>6</td>
<td>Crossweb Tension Variations</td>
</tr>
<tr>
<td>75</td>
<td>Tension Variations Across Web Length</td>
</tr>
<tr>
<td>77</td>
<td>In-plane Misalignment and Bending</td>
</tr>
<tr>
<td>78</td>
<td>In-plane Example Problem</td>
</tr>
<tr>
<td>79</td>
<td>High In-plane Misalignments</td>
</tr>
<tr>
<td>80</td>
<td>Out-of-plane Twisting</td>
</tr>
<tr>
<td>81</td>
<td>Diagonal Shear Wrinkles</td>
</tr>
<tr>
<td>82</td>
<td>Manual Alignment Checks</td>
</tr>
<tr>
<td>83</td>
<td>Roller Diametral Variations</td>
</tr>
<tr>
<td>85</td>
<td>Partial Drive</td>
</tr>
<tr>
<td>85</td>
<td>Path Length Variations</td>
</tr>
<tr>
<td>86</td>
<td>Baggy Webs</td>
</tr>
<tr>
<td>89</td>
<td>Bibliography</td>
</tr>
<tr>
<td>7</td>
<td>Temporal Tension Variations</td>
</tr>
<tr>
<td>91</td>
<td>Time Varying Tension</td>
</tr>
<tr>
<td>92</td>
<td>Drive Sensor Resolution</td>
</tr>
<tr>
<td>94</td>
<td>Drive Actuator Resolution</td>
</tr>
<tr>
<td>94</td>
<td>Steady State vs. Transient Response</td>
</tr>
<tr>
<td>95</td>
<td>Speed Changes</td>
</tr>
<tr>
<td>95</td>
<td>Speed Reference</td>
</tr>
<tr>
<td>96</td>
<td>Multiple Drive Sections</td>
</tr>
<tr>
<td>97</td>
<td>Web Time Constants and Transport</td>
</tr>
<tr>
<td>98</td>
<td>Selected Bibliography</td>
</tr>
<tr>
<td>8</td>
<td>Guiding</td>
</tr>
<tr>
<td>99</td>
<td>Guiding Introduction</td>
</tr>
<tr>
<td>100</td>
<td>Camber</td>
</tr>
<tr>
<td>101</td>
<td>Acceleration Offset</td>
</tr>
<tr>
<td>102</td>
<td>Passive Guides</td>
</tr>
<tr>
<td>103</td>
<td>Unwind Guide</td>
</tr>
<tr>
<td>103</td>
<td>Rewind Guide</td>
</tr>
<tr>
<td>104</td>
<td>Steering Guide</td>
</tr>
<tr>
<td>106</td>
<td>Displacement Guide</td>
</tr>
<tr>
<td>107</td>
<td>Oscillation</td>
</tr>
<tr>
<td>108</td>
<td>Bibliography</td>
</tr>
<tr>
<td>9</td>
<td>Nips</td>
</tr>
<tr>
<td>109</td>
<td>Nipped Rollers for Web Transport</td>
</tr>
<tr>
<td>110</td>
<td>Nipped Rollers for Web Processing</td>
</tr>
<tr>
<td>111</td>
<td>Hertzian Contact</td>
</tr>
<tr>
<td>112</td>
<td>Determining Peak ZD Nip Stress</td>
</tr>
<tr>
<td>113</td>
<td>A Rubber Covered Roller Model</td>
</tr>
<tr>
<td>114</td>
<td>Complex Nip Models</td>
</tr>
<tr>
<td>115</td>
<td>Interior Contact Stresses</td>
</tr>
<tr>
<td>116</td>
<td>Nip Loading Mechanisms</td>
</tr>
<tr>
<td>117</td>
<td>Nip Load System Friction</td>
</tr>
<tr>
<td>118</td>
<td>Load Versus Gap Control</td>
</tr>
<tr>
<td>119</td>
<td>Roller Deflection in a Nip</td>
</tr>
<tr>
<td>120</td>
<td>Crowning</td>
</tr>
<tr>
<td>121</td>
<td>Load Crown Match</td>
</tr>
<tr>
<td>122</td>
<td>Deflection Compensating Techniques</td>
</tr>
<tr>
<td>123</td>
<td>Roller Geometrical Errors</td>
</tr>
<tr>
<td>124</td>
<td>Nip Impressions</td>
</tr>
<tr>
<td>125</td>
<td>Static Nip Impressions</td>
</tr>
<tr>
<td>126</td>
<td>Dynamic Nip Impressions</td>
</tr>
<tr>
<td>127</td>
<td>Bibliography</td>
</tr>
<tr>
<td>10</td>
<td>Slitting</td>
</tr>
<tr>
<td>129</td>
<td>Slitting Issues</td>
</tr>
<tr>
<td>130</td>
<td>Slitting System Options</td>
</tr>
<tr>
<td>131</td>
<td>Laser Slitting</td>
</tr>
</tbody>
</table>
The Mechanics of Web Handling

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Spreading</td>
</tr>
<tr>
<td>131</td>
<td>Razor Slitting</td>
</tr>
<tr>
<td>132</td>
<td>Score Slitting</td>
</tr>
<tr>
<td>133</td>
<td>Shear Slitting</td>
</tr>
<tr>
<td>136</td>
<td>Waterjet Slitting</td>
</tr>
<tr>
<td>137</td>
<td>Trim Removal</td>
</tr>
<tr>
<td>138</td>
<td>Other Cutting Methods</td>
</tr>
<tr>
<td>139</td>
<td>Bibliography</td>
</tr>
<tr>
<td>12</td>
<td>Winding</td>
</tr>
<tr>
<td>157</td>
<td>Why Wind?</td>
</tr>
<tr>
<td>158</td>
<td>Winder Classes and Arrangements</td>
</tr>
<tr>
<td>159</td>
<td>The TNT of Winding</td>
</tr>
<tr>
<td>160</td>
<td>Roll Structuring</td>
</tr>
<tr>
<td>161</td>
<td>Roll Structure Measurement</td>
</tr>
<tr>
<td>162</td>
<td>Wound Roll Stresses</td>
</tr>
<tr>
<td>163</td>
<td>Interlayer Slippage</td>
</tr>
<tr>
<td>164</td>
<td>Roll Edge Quality</td>
</tr>
<tr>
<td>165</td>
<td>Roll Quality</td>
</tr>
<tr>
<td>166</td>
<td>Bibliography</td>
</tr>
<tr>
<td>13</td>
<td>Wrinkling</td>
</tr>
<tr>
<td>167</td>
<td>Wrinkling Introduction</td>
</tr>
<tr>
<td>168</td>
<td>Compressive Buckling of Webs</td>
</tr>
<tr>
<td>169</td>
<td>Constrained Expansion</td>
</tr>
<tr>
<td>171</td>
<td>Other MD Trough Wrinkling Causes</td>
</tr>
<tr>
<td>172</td>
<td>Diagonal Shear Wrinkles</td>
</tr>
<tr>
<td>172</td>
<td>Roller Misalignment</td>
</tr>
<tr>
<td>173</td>
<td>Shear Wrinkling Regimes</td>
</tr>
<tr>
<td>174</td>
<td>Other Diagonal Wrinkling</td>
</tr>
<tr>
<td>175</td>
<td>CD Wrinkles and Winding</td>
</tr>
<tr>
<td>176</td>
<td>The Baggy Web</td>
</tr>
<tr>
<td>178</td>
<td>Baggy Web Troubleshooting</td>
</tr>
<tr>
<td>179</td>
<td>Bibliography</td>
</tr>
<tr>
<td>180</td>
<td>Bibliography - Selected Tension Measure</td>
</tr>
<tr>
<td>14</td>
<td>Web Breaks</td>
</tr>
<tr>
<td>181</td>
<td>Importance of Runnability</td>
</tr>
<tr>
<td>182</td>
<td>Defining Runnability</td>
</tr>
<tr>
<td>182</td>
<td>Environmental Considerations</td>
</tr>
<tr>
<td>183</td>
<td>Load-Strength Distributions</td>
</tr>
<tr>
<td>184</td>
<td>Can Lab Tests Predict Runnability?</td>
</tr>
<tr>
<td>185</td>
<td>Pilot Machine Testing of Runnability</td>
</tr>
<tr>
<td>186</td>
<td>Flaws and Fracture</td>
</tr>
<tr>
<td>187</td>
<td>Runnability Troubleshooting</td>
</tr>
<tr>
<td>188</td>
<td>Break Phone Processes</td>
</tr>
<tr>
<td>189</td>
<td>Web Break Troubleshooting Checklist</td>
</tr>
<tr>
<td>190</td>
<td>Bibliography</td>
</tr>
</tbody>
</table>

Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Units and Conversions</td>
</tr>
<tr>
<td>B1</td>
<td>Selected Bibliography</td>
</tr>
<tr>
<td>B2</td>
<td>Some Web Handling Resources</td>
</tr>
<tr>
<td>C</td>
<td>Calculations and Formulae</td>
</tr>
<tr>
<td>205</td>
<td>Glossary</td>
</tr>
<tr>
<td>217</td>
<td>Index</td>
</tr>
</tbody>
</table>

Page 3 of 8
Subject Index

Abrasives - 130
Absorbency - 30
Acceleration Offset - see Speed, Accel Offset
Acceleration Rate - see Speed, Changes
Adhesive - 40, 130, 131, 132
Aging - 17
Air Entrainment
 Nipped Rolls - 109
 Rollers - 49
 Winding - 4, 175
Air pressure - see Pneumatics
Air Resistance - 66
Alignment - see Misalignment
Anelastic Effects - 17
Angel Hair - see slitting
Anisotropy - 15
Axes - 1
Baggy Web
 and Bowed Roller - 146
 and Guiding - 100
 Definition - 176
 Measurement - 88, 176, 177
 Slack Edge - 75, 76, 86, 87
 and Spreading - 141
 Stress Distribution - 176
 Tension Variations - 75, 76, 86, 87
 Troubleshooting - 176
 Web Breaks - 187
 Wrinkling - 86, 174
Bar - see also Spreading, Dbar - 85, 102
Basis Weight - 22
 Defining - 26
 Measurement - 26
 and Roll Weight - 28, 34
Bearing
 Bowed Roller - 144
 Drag - see Drag
Belt - 84, 94, 102, 107
Bent Pipe - see Spreader, Bent Pipe
Blocking - see Wound Roll
Books - 7
Bowed Roller - see Spreading, Bowed Roller
Breaks - see Runnability
Brittle - 12, 61, 181, 186
Buckles - 9
Buckling - 168, 169
Bulk
 Definition -30
 Measurement - 30
 Roll - 31
 and Slitting - 130
Calender
 Nips - 110
 Web Breaks - 181
Caliper - see also Basis Weight and Density
 and Bulk - 30
 General - 22, 26
 Measurement - 27
 and Roll Weight - 28
 and Tension Settings - 50
 and Wrinkling of - 86, 167, 168, 173
Camber - see Baggy Web
Cantilevered - 76
Catenary (Tension) Control - 61
Coating - see Wrinkling, Expansive
Chemistry - 9
Compensator - 35
Compressibility - 33
Concave Roller - see Spreading
Coning - see Wound Roll Telescope
Control - see Dancer, Nip, Tension etc
Converting
 Definition - 3
 Industry - 2,3
Covers - see Roller Covers
Creep - 17
Crown - see Roller, Diameter Variation
Current Control - 63
Customer - see also Product Spec - 46, 167
Dbar - see Spreading
Dancer - see also Tension, Load Cell
 Calibration - 55
 Design -56-58
 Friction - 93
 Response - 97
Databases - 7
Density
 and Bulk - 30
 Caliper Affects - 26
 General - 22
 and Roll Weight - 34
 Diameter Variations - see Roller, Diameter
 Die cut - 138, 110
 Documentation - 187
 Darg - 65-67, 91
 Draw Control - see Speed Control
 Drawing (Process) - 51, 93
 Drive - see also Response and Speed and Tension
 Bowed Roller - 144
 Feedforward - 96
 Helper - 73
 Mechanical Losses - 66
 Resolution - 94
 Sections - 96
 Ductile - 12, 51, 186
 Dust - see Slitting
 Economics - see also Waste - 157
 Efficiency - see Waste
 Electronics - 55
 Embossing - 110
 Encoder - see Speed Measurement
 Film - 9, 15, 131
 Flutter - 49
 Folding - 142
 Footage Counter - see Length
 Foundations - 17
 Flattening - 151, 153
 Flatness - 12
 Fracture Mechanics - 186
Friction
 Affects - 19
 Dancer - 56
 Kinetic - 19
 Measurement - 19-20
 Roller-to-Web - 70
 Static - 19
Gauge - 22
Geometrical Control - 17, 49
Grooving - see Roller, Grooving
Guiding
 Displacement - 106
 General - 99
 Edge Pull - 150
 Oscillation - 103
Subject Index

Passive - 102
and Registration - 36, 99
Response - 104-106
Spans - 104-106
Steering - 104
Unwind - 103
Winder - 103
Hooke's Law - 16
Humidity - see Moisture
Hysteresis - 18
Inertia
 Compensation - 68
 Dancer - 58
 Tension Effects - 68, 69
Isotropy - 15
Laminating - 51, 96, 99, 110
Layflat - see Flatness
Length - see also Speed
 General - 25
 Measurement - 28, 41-43
 and Registration - 36
 and Waste - 48
Level - see Misalignment
Lineshaft - 35
Load Cell - see Tension, Load Cell
Loop - see Tension, Catenary
Machine Builders
 Expertise - 7
Magazines - 7
Maintenance
 Roller - 66, 82-84, 101
 Tension Control - 55, 56, 94-95, 101
 Slitting - 129, 132, 135
Material
 Properties - 5, 9-22, 184
Membrane - 5
Memory - 18
Misalignment
 Alignment Methods - 172
 Foundation Creep - 17
 Inplane - 77-79
 Measurement - 82
 Parallel - 82
 and Path - 101, 147
 Square - 82
 and Tension Variations - 76-82, 173
 and Web Breaks - see Runnability
 and Wrinkling - 169, 172, 173
Modulus
 and Caliper - 27
 and Draw Control - 59, 60
 of Elasticity - 9, 11
 of Rupture - 11
 and Tension Set - 51
 of Toughness - 11
 Units - 22
Mohr's Circle - 168
Moisture - see also Temperature
 and Basis Weight - 26
 and Length - 28
 and Tension - 60, 72
 and Web Breaks - 12, 181, 182
 and Width - 29
 and Wrinkling - 169
Narrow Web - 82
Nip
 and Baggy Webs - 86
 Crowning - 120
 Footprint - 111
 Impressions - 124-126
 Load Control - 116-118
 Rolling Resistance - 66
 and Spreaders - 153, 155
 Stresses - 111-115
 Uniformity - 119-125, 123
 Units - 22
 and Web Breaks - 181, 188
 Winding - 159, 160, 163, 109
 Winding Defects - see Wound Roll
 and Wrinkling - 174
Nip Induced Defects - 19
Nonwovens - 9, 13, 30, 136
Normal Entry Law - 101, 142, 145
Offsets - see Wound Roll Offsets
Operators - 72
Organizations - 7
Orthotropy - 15
Oscillation - 103, 107
Oven - 101, 104, 170
Packaging - 30, 33, 157
Paper
 Friction - 19
 Industry - 1
 Moisture - 14
 Skew - 15
 Path of Web - see also Guides and Spreaders - 49, 83, 99, 101, 106, 142, 145, 147, 153
Pipe - see Bar
Plates - 5
Pneumatics - 63, 94
Poisson Radio - see also Width - 29, 169
Principle Axes - 15
Printing
 Dust - 129
 Industry - 2
 Nips - 110
 Registration - 35
 Web Breaks - 181, 188
 Wrinkling - 170
Process
 Design - 3
Product
 Design - 3, 6
 Examples - 2
 Specifications - 25, 33, 43, 45
Productivity - see also Speed - 158, 181
Pull Roller - see Roller
Quality Control - 10, 21
Razor Slitting - see Slitting
Registration - 35, 51, 60, 86, 91, 99
Repeat - 35
Resonance - 58, 97
Response - 91, 95
Ridges - 9
Roll - see Wound Roll
Roller
 Bearing Drag - see Drag
 Counts - 6, 67, 69, 71
 Covers - 18, 110, 113, 115
 Crowning - 120, 121
 Deflection - 76, 119-122, 169, 171
 Design - 6
 Diameter Variations - 83, 102, 171, 174
Subject Index

Grooving - 152, 171
Inertia - see Inertia
Importance - 5
Misalignment - see Misalignment
Pull - 109
Sizing - 4, 49
Slippage - 40, 70
Tolerances - 6, 71, 123
Traction - 20, 49, 60, 70, 95, 142, 109
Wrap Angle - 70, 142, 154
Rolling - 110
Roughness - 27
Definition - 182
Flaws - 186
Fracture Mechanics - 186
General - 9, 12, 49
Proof Testing - 189
and Roller Alignment - 79, 172, 173, 187
and Strength - 183
and Tension - 183-185
Testing - 185
Troubleshooting - 187-189
Web Break Detectors - 187
Safety - 129
Sag - see Tension, Catenary
Set - 18
Score Slitting - see Slitting
Shear - 16
Shear Slitting - see Slitting
Sheeting - 138
Shipping - 30-31
Slippage - see Length Measurement
Skew
Material - 15
Roller - 85
Slack Edge - see Baggy Web
Slitter Rewinder - see Winding
Slitting
Angel Hair - 129
Cant Angle - 135
Difficulties - 129, 130
Dust - 129
General - 13
Grinding - 132, 134
Handling - 134
Laser - 131
Life 129, 131, 132
Metallurgy - 134
Options - 130, 138
Overlap - 135
Quality of Cut - 129
Rake Angle - 135
Razor - 131
Rings
Safety - 129
Score - 132
Sharpness - 129, 131, 132
Shear - 133-135
Sidetload - 134
Waterjet - 136
Web Breaks - 181, 188
Width Setup - 25
Wrinkling - see Wrinkling, Expansive
Smoothness - 27
Solvents - 14, 170
Span
Geometries - 5
Guides - 104-106
Length - 77
and Wrinkling - 173
Specifications - see Product Specifications
Speed - see also Length
Acceleration Offset - 101
Changes - 65, 68, 94, 95
Control - 9, 59, 60, 72, 159
Encoder - 8, 41, 42
Limits - 4
Measurement - 41, 93
Reference - 95, 96
Slitting - 130, 132, 133, 134
Spreading
and Baggy Webs - 178
Bent Pipe - 85
Bowed Roller - 85, 144-146, 173
Compliant Cover - 151
Concave Roller - 84, 143
Dbar - 141
Definition - 141, 142, 155
Dual - 148-149
Duration - 141, 153
Edge Pull - 150
Evaluation - 155
Expander - 150
Flattening - 151, 154
Forces - 142
Locations - 153, 155
Measurement - 151, 155
and Misalignment - 80
Pos-Z - 149
Sizing - 144, 145
and Span Length - 85
Tenter - 150
and Traction - 141, 142, 145, 150
Width Change - 16
Wrap Angle - 142, 146, 148
Square - see Misalignment
Stability - 91
Standards - see Testing
Static Electricity - 20
Statistics - 182, 183, 187
Steering - see Guide or Path
Storage - 17
Strength
and Tension Setpoint - 10, 50, 51
Tensile - 10, 22
Ultimate - 11
Units - 22
Yield - 11
Stress Relaxation - 17
Stretch - 10
String - 5
Tachometer - see Speed, Measurement
Tape - 143
TAPPI - ii, 27
TEA - 11
Telescoping - see Wound Roll Telescope
Temperature - see also Moisture
General - 12, 14
and Length - 28
and Tension - 72
and Web Breaks - 181
and Width - 29
and Wrinkling - 169, 170
Tension and Tension Control
Subject Index

and Spreaders - 141-155
Slitting - 133
Tension Effects - 49, 81
Web Breaks - 188