Starch and Starch Products for Wet End Application

PREFACE

TAPPI PRESS books review the state of the art in a specific field in papermaking. The use of starch and starch products in surface sizing and as a coating binder has been covered in a series of TAPPI monographs; the most recent one published in 2001. However, there has not yet been a treatise that addresses issues in the preparation and application of starch and starch products for use in the wet stages of the papermaking process. This publication intends to close this gap and serve as a complement to the previous publications on the surface application of starch.

TAPPI monographs serve as guides to operators, engineers, and other professionals in production, research, and product development. In recent years, there have been wide ranging changes in the operation of the wet end of the paper machine. New procedures in starch utilization, many of them in conjunction with fine pigments and synthetic polymers, made substantial increases in production speed and product quality possible. Successful management of high speed papermaking in this new technical era requires detailed understanding of polymer properties, the importance of charge, and the interaction of furnish components.

This publication covers a wide range of subjects in starch utilization, ranging from the preparation of specific starch products to their use in papermaking for flocculation, retention, drainage, strength, and sizing control. Environmental issues in the use of starch and analytical procedures for starch analysis and charge characterization are also addressed. All chapters were appended with references to the relevant scientific and technical literature and with special emphasis on publications during the last 20 years when many of the new procedures for starch utilization at the wet end were first commercialized. The most recent patent literature was also referenced. An attempt was made to balance the text to make it informative and valuable to both operating personnel in the paper mills and their research and development staff. Furthermore, this monograph might be beneficial to personnel in the starch industry, various suppliers to the paper industry, and in the teaching of students for careers for and in conjunction with the paper industry. The varied background of anticipated readers of this book has made it advisable to repeat certain introductory and general arguments in chapters on different modes of starch application. This practice will allow to study the subjects on their own without need to refer to introductory chapters, while also emphasizing the broad action spectrum of starch use for different application targets.

This author is indebted to the reviewers for this publication. Dellev Glittenberg (Cargill Inc.), Robert Kearney (Western Polymer Corporation), and Robert Klem (retired, formerly with Grain Processing Corporation and J. M. Huber Corporation) provided valuable advice and suggestions for improvements. Additional generous support was received from Pieter Brouwer (AVEBE B.A.), Eckehard Möller (PTS, Heidenheim), and former colleagues at Westvaco Corporation.

It is my sincere hope that this monograph will serve the paper industry well as a source of information and as a guide to further advancement in the use of starch products for the cost effective production of superior grades of paper and paperboard.

Hans W. Maurer
TABLE OF CONTENTS

CHAPTER 1

USE OF STARCH IN THE MANUFACTURE OF PAPER ... 1

- Literature Cited ... 3

CHAPTER 2

PROPERTIES OF STARCH ... 4

- Polymeric Properties .. 6
- Colloidal Properties ... 9
- Functional Properties 11
- Charge Properties .. 13
- Purity Requirements .. 14

- Literature Cited ... 14

CHAPTER 3

CHEMICAL MODIFICATION OF STARCH ... 18

- Chemical Modification by the Starch Supplier 19
- Starch Modification at Mill Site 24
- Grafting Reactions on Starch 27
- Charged Polymeric Complexes 27

- Literature Cited ... 28

CHAPTER 4

THE PAPERMAKING PROCESS ... 32

- Papermaking Operation 33
- Stock Preparation .. 36
- Properties of the Papermaking Stock 38

- Literature Cited ... 40

CHAPTER 5

DELIVERY OF STARCH TO THE PAPER MILL AND ON-SITE STORAGE 43

- Delivery to the Paper Mill 44
Starch and Starch Products • Contents

Bulk Starch Unloading and Transfer .. 45
Bulk Storage Silos ... 46
Safety Requirements for Bulk Starch Systems 47
Starch Slurry Make-Down Equipment and Transport 47
Literature Cited .. 51

CHAPTER 6

DISPERSION OF STARCH FOR WET END APPLICATION 52
Suspension of Starch in Water .. 53
Starch Gelatinization ... 54
Pre-Dispersed Starch .. 57
Starch Dispersion at Mill Site .. 57
Partial Dispersion of Starch ... 58
Continuous Starch Cooking ... 58
Thermal Conversion of Starch .. 59
Thermo-Chemical Conversion of Starch 61
Literature Cited .. 62

CHAPTER 7

PROPERTIES OF STARCH DISPERSIONS 63
Viscosity of Starch Pastes .. 64
Properties of Waxy Starch ... 65
Starch Retrogradation in the Dispersed State 66
Retrogradation Control ... 67
Literature Cited .. 69

CHAPTER 8

STARCH SELECTION FOR USE AT THE WET END 71
Literature Cited .. 75

CHAPTER 9

ADSORPTION OF STARCH ON PAPERMAKING FURNISH 76
Adsorption Properties of Cellulose and Pigments 77
Interaction of Starch with Papermaking Furnish 78
CHAPTER 14

USE OF STARCH IN RETENTION SYSTEMS WITH SYNTHETIC POLYMERS AND MICROPARTICLES ... 112
Dual Polymer Systems ... 113
Use of Starch in Dual Polymer Systems ... 113
Microparticulate Systems .. 114
Use of Starch in Microparticulate Systems ... 115
Managing Microparticle Systems .. 119
Summary .. 119
Literature Cited ... 120

CHAPTER 15

USE OF STARCH AS A STRENGTH AID BY WET END APPLICATION .. 122
Bonding within a Paper Sheet .. 123
Wet End Addition of Starch ... 126
Application of Native Starch for Strength Gain .. 127
Application of Anionic Starch for Strength Gain ... 128
Application of Cationic Starch for Strength Gain .. 129
Replacement of the Size Press by Wet-End Starch ... 131
Recent Patent Disclosures ... 132
Summary .. 133
Literature Cited ... 133

CHAPTER 16

SPECIAL STARCH PRODUCTS FOR WET END APPLICATION .. 135
Coacervates with Starch ... 136
Particulate Starch Products .. 137
Starch Aldehydes ... 140
Cross-Linked and Zwitter Ion Starches .. 140
Recent Patent Disclosures ... 140
Control of Stickies171
Literature Cited .. .172

CHAPTER 21
EVALUATION OF STARCH PROPERTIES175
Sampling .. .176
Microscopic Evaluation177
Chemical Examination178
Analysis of Starch Derivatives .. .182
Viscosity Evaluation183
Recording Viscometers185
Other Viscometers for Starch Characterization188
Literature Cited .. .189

CHAPTER 22
EVALUATION OF PULP AND PAPER STOCK193
Freeness .. .194
Drainage and Retention .. .194
Literature Cited .. .195

CHAPTER 23
ANALYSIS OF CHARGE IN FURNISH196
Zeta Potential197
Microelectrophoresis .. .198
Streaming Potential198
Streaming Current .. .199
Electrokinetic Sonic Amplitude .. .199
Manual Charge Titration199
Instrumental Charge Titration .. .201
Literature Cited .. .203

CHAPTER 24
ANALYSIS OF STARCH IN PAPER204
Literature Cited .. .205
USE OF STARCH IN
THE MANUFACTURE OF PAPER

Starch is an important additive in the manufacture of most grades of paper and paperboard. The consumption of starch in the papermaking process and during subsequent conversion operations ranks third by weight after cellulose fiber and mineral pigments. The global paper industry consumes about 5 million tons/year of starch. For the total world paper and paperboard production of about 330 million tons/year, the quantity of added starch represents about 1.5% starch by weight across all grades of paper and paperboard (1).

Starch utilized by the US paper industry is primarily derived from corn. Additional sources of starch are potatoes and wheat. The characteristic shapes of the major commercial

![Characteristic granular shapes of commercial starches](image)

Starches are illustrated in Figure 1.1. For most uses in papermaking, starch is chemically modified by either the starch supplier or on-site, which enhances performance for specific applications. Only in corrugating and laminating is a large share of unmodified starch used.

Annual consumption of industrial starch in the US for paper and paperboard production during the 1990’s exceeded 2.5 billion pounds, of which about 70% were utilized in chemically modified form. Another 1 billion pounds were consumed for corrugating and laminating applications (2). In paper manufacturing, the largest share of starch is used for surface sizing (64%), followed by wet end addition (21%), use as coating binder (12%), and for spraying (3%). (2).

Starch products are required for a variety of needs in the production of paper and paperboard, such as:

- Drainage aid to enhance water removal from the papermaking stock,
- Flocculant to facilitate the formation of a uniform sheet of paper during water drainage,
- Retention aid to trap fiber fines and pigments within the paper structure,
- Bonding agent to increase the strength and printability of paper and paperboard,
- Carrier for sizing agents to control water sensitivity of paper and dimensional stability,
- Activating agent for fluorescent brightener added to paper,
- Adhesive to bond loose fibers at the dried sheet surface and to induce stiffness, raise strength, and facilitate printability,
- Binder for pigmented coatings that are applied to the finished paper to attain high levels of optical properties, smoothness, gloss, and printability,
- Adhesive for the conversion of paperboard to a multitude of packaging applications,
- Flocculant for mill effluent treatment and reduction of COD in waste water.
POLYMERIC PROPERTIES

Plants store small granules of starch in specific locations, primarily in seeds, tubers, or roots, from which the starch manufacturer removes them (2, 3, 4). Different starches are specified by their form, size, size distribution and bulk density (Table 2.1), the latter depending on the drying process used after separation from the plant source. Wheat starch is distinguished by a bimodal distribution of particle sizes (5).

<table>
<thead>
<tr>
<th>STARCH</th>
<th>AVERAGE</th>
<th>RANGE</th>
<th>LOOSE</th>
<th>PACKED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular corn</td>
<td>15</td>
<td>5-25</td>
<td>36</td>
<td>50</td>
</tr>
<tr>
<td>Waxy maize</td>
<td>12</td>
<td>5-25</td>
<td>34</td>
<td>51</td>
</tr>
<tr>
<td>High-amyllose</td>
<td>15</td>
<td>5-40</td>
<td>37</td>
<td>52</td>
</tr>
<tr>
<td>Grain sorghum</td>
<td>15</td>
<td>5-30</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Waxy grain</td>
<td>15</td>
<td>6-30</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Sorghum</td>
<td>15</td>
<td>2-35</td>
<td>38</td>
<td>54</td>
</tr>
<tr>
<td>Rice</td>
<td>5</td>
<td>2-10</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Potato</td>
<td>30</td>
<td>15-100</td>
<td>46</td>
<td>56</td>
</tr>
<tr>
<td>Sweet potato</td>
<td>12</td>
<td>10-25</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Tapioca</td>
<td>20</td>
<td>5-35</td>
<td>37</td>
<td>52</td>
</tr>
<tr>
<td>Sago palm</td>
<td>35</td>
<td>15-65</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Banana</td>
<td>30</td>
<td>5-90</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Arrowroot</td>
<td>25</td>
<td>8-50</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

*Bulk densities will vary. Flash-dried starches have lower bulk densities than belt-dried starches, i.e., belt-dried corn = 42 lb/ft³.

Table 2.1 Granule size and bulk density of starches

Commercial starches are not completely neat, since some residue will remain with the starch granules after separation from their source (6) (Table 2.2). Starch granules are semi-crystalline, containing regions that are highly crystalline and others that are amorphous (7). Water is an integral part of the starch granule; it is also adsorbed and desorbed, depending on the prevailing relative humidity (8, 9).

At the molecular level, starch is actually a blend of two different structures, amylose and amyllopectin, which are associated through hydrogen bonding (10, 11, 12). Both can be thermally dispersed in water (13, 14, 15).

In amylose, about 300 to 6000 α-1, 4 linked anhydroglucose units form a glucopyranosyl chain. When isolated and hydrated, the molecule twists due to entropy into the shape of a helix (16) while the closely related cellulose molecule remains straight (Figure 2.3).

Starch has to be dispersed in water for most of its applications. Dispersion is generally