Brownstock Washing Fundamentals and Practices
Table of Contents

i. Preface
ii. Contributing Chapter Authors

1.0 Introduction
 1.1 Washing as a Fractionation Process
 1.2 Early Washing Systems
 1.3 Modern Washing Systems
 1.4 Reasons for Washing
 1.5 Why Vacuum Drum Washers are so Important
 1.6 Layout of the Current Book
 1.7 References

2.0 Fundamental Factors and the Different Types of Washing
 2.1 Physical Factors Impacting Washing
 2.1.1 Stock Type
 2.1.2 Stock pH
 2.1.3 Temperature
 2.1.4 Air Entrainment
 2.2 Operational Factors Impacting Washing
 2.2.1 Inlet Consistency
 2.2.2 Discharge Consistency
 2.2.3 Drum Speed
 2.2.4 Pulp Mat Consistency and Filtration Pressure (Pressure Washers)
 2.2.5 Wash Water Entering Velocity through the Pulp Mat
 2.2.6 Dilution Factor
 2.3 Fundamental Principles
 2.3.1 Drainage
 2.3.2 Diffusion
 2.3.3 Mechanical Compression
 2.3.4 Sorption
 2.4 Types of Washing
 2.4.1 Dilution
 2.4.2 Extraction
 2.4.3 Displacement
 2.4.4 Diffusion
 2.5 Acknowledgement
 2.6 References

3.0 Fundamental Design of Vacuum Washing Systems
 3.1 Approach Flow Elements
 3.1.1 Blow Tanks
 3.1.1.1 Low-density dilution zone
 3.1.1.2 Process startups
 3.1.1.3 Process shutdowns
 3.1.1.4 Straight-sided blow tanks
3.1.2 Defibrilizers
3.1.3 Homogenization Tank
3.1.4 Hot-Stock Refiners
3.1.5 Deknotting and Screening

3.2 Understanding the Wash Cycle

3.3 Main Wash Line Components

3.3.1 Filtrate Tanks
 3.3.1.1 Baffles
 3.3.1.2 Interface ratio
 3.3.1.3 Seal pots
 3.3.1.4 Vacuum breaker water seal

3.3.2 Soap and Foam Handling
 3.3.2.1 Soap skimming from the first-stage filtrate tank
 3.3.2.2 Continuous foam handling
 3.3.2.3 Foam lines
 3.3.2.4 Foam breakers

3.3.3 Vacuum Drum Construction and Operation
 3.3.3.1 Approach flow feed piping
 3.3.3.2 Inlet box
 3.3.3.3 Cylinder design
 3.3.3.4 Droplegs
 3.3.3.5 Valve timing
 3.3.3.6 Countercurrent shower flow
 3.3.3.7 Nozzles and weir showers
 3.3.3.8 Air doctor takeoff
 3.3.3.9 Intermediate submerged repulpers
 3.3.3.10 Washer hoods

3.4 References

4.0 Washing Efficiency Calculations

4.1 Specific Loading
4.2 Dilution Factor \((DF)\)
4.3 Wash Ratio \((WR)\)
4.4 Displacement Ratio \((DR)\)
4.5 Thickening Factor \((TF)\)
4.6 Overall Washing Efficiency
4.7 Equivalent Displacement Ratio \((EDR)\)
4.8 Solids Reduction Ratio
4.9 The Norden Efficiency Factor
4.10 Modified Norden Number
4.11 Converting Between EDR and Modified Norden \((E_{10})\) Number
4.12 Process Implications
 4.12.1 Inlet Vat Consistency
 4.12.2 Drum Speed on Vacuum Washers
 4.12.3 Equipment Type Considerations
4.13 References

5.0 Modern Washing Processes
5.1 In-Digester Washing
5.2 Diffusion Washing
5.2.1 Atmospheric Diffusion Washers
5.2.2 Pressurized Diffusion Washers
5.3 Horizontal Belt Washers
5.4 Rotary Pressurized Drum Washers
5.4.1 Compaction Baffle (CB) Washer (Filter)
5.4.2 Displacement Drum (DD Washer)
5.5 Extraction Presses
5.5.1 Twin-Roll Presses
5.5.2 Screw Presses
5.6 References

6.0 Wash Water Quality
6.1 Sources of Wash Water
6.1.1 Difficulties associated with specific water sources
6.1.2 Modification of wash water to enhance performance (CO\textsubscript{2} and pH modification)
6.1.3 Condensates Used in Washing
6.1.4 Stripping (cleaning) of foul condensates for reuse as brownstock wash water
6.1.4.1 Types of Strippers
6.1.4.1.1 Air Strippers
6.1.4.1.2 Steam Strippers
6.1.4.2 Integrating BOD-type steam strippers into evaporator systems
6.1.5 Anaerobic Treatment of Condensates
6.2 Condensate Impact on Washing
6.3 References

7.0 Impact of Extended and Oxygen Delignification upon Brownstock Washing
7.1 Extended Delignification
7.2 Oxygen Delignification
7.2.1 Chemistry
7.2.2 Process Reaction Conditions
7.2.2.1 Alkali Charge
7.2.2.2 Temperature
7.2.2.3 Retention Time
7.2.2.4 Oxygen Charge
7.2.2.5 Consistency
7.2.3 Carryover (raw) and carryback (oxidized) solids impact on oxygen delignification
7.2.3.1 Delignification
7.2.3.2 Viscosity
7.3 Post-Oxygen Washing
7.4 References

8.0 Trace Metals in Brownstock Washing
8.1 Principles Regarding Calcium in Kraft Cooking and Washing
8.2 Causticizing and White Liquor
 8.2.1 Causticizing
 8.2.2 Clarification and Filtration
 8.2.3 White Liquor and Wood Chips
8.3 Heat Impacts
8.4 Calcium Solubility in Digesters
8.5 Technical Analysis
 8.5.1 Catechol Influence
 8.5.2 Pyrogallol Influence
 8.5.3 Chelation
 8.5.4 Supersaturation
 8.5.5 Inhibition of Precipitate Growth
8.6 Digester Scale
8.7 Scale in Brownstock Washing
8.8 Conclusions
8.9 References

9.0 Process Upsets, Troubleshooting, and Optimization
9.1 Process Upsets
 9.1.1 Consistency Upsets
 9.1.2 Temperature
 9.1.3 Pitch Problems
 9.1.4 Production Rate Changes
 9.1.5 Swinging Wood Species between Softwood and Hardwood
 9.1.6 Blending Pine and Hardwood Black Liquors
9.2 Mechanical Issues Resulting in Upsets and Long-Term Operating Difficulties
 9.2.1 Plugging and Breaking
 9.2.2 Consistency and Flow Meters
 9.2.3 Valve Stiction
9.3 Understanding the Basic Washing Principles to be Optimized
 9.3.1 Diffusion Equilibrium
 9.3.2 Dilution Washing
 9.3.3 Extraction Washing
 9.3.4 Displacement Washing
 9.3.5 Interactions
9.4 Preparation for Troubleshooting and Optimization
 9.4.1 Mechanically Sound Operation
 9.4.2 Operating Procedures
 9.4.3 Statistical Process Control Charts for Performance Stability
 9.4.4 Specific Loading and Washer Performance
9.4.5 Washing Efficiency
9.4.6 Sampling

9.5 Troubleshooting
9.5.1 Treating Symptoms versus Root Cause Analysis
9.5.2 Individual Stage and Component Optimization
 9.5.2.1 Pulp Mat Profile
 9.5.2.2 Inlet Piping
 9.5.2.3 Inlet Box
 9.5.2.4 Inlet Weir
 9.5.2.5 Showers and Displacement Washing
 9.5.2.6 Tramp Water Infiltration
 9.5.2.7 Wash Water Temperature
 9.5.2.8 Entrained Air
 9.5.2.9 Drum Vacuum
 9.5.2.10 Seal Tanks

9.5.3 Process Modeling

9.6 References

10.0 Material Balance Principles
10.1 Fundamentals
10.2 Brownstock Operations
 10.2.1 Batch Digesters
 10.2.2 Continuous Digesters
 10.2.3 Washers
 10.2.3.1 Vacuum Washers
 10.2.3.2 Wash Presses
 10.2.3.3 Diffusers
 10.2.3.4 DD Washers
 10.2.3.5 Chemi-Washers
 10.2.3.6 Digester Washing
 10.2.4 Oxygen Delignification
 10.2.5 Screening and Refining
 10.2.6 Vacuum Washer Thermal Aspects
10.3 Reconciling Balances with the Real World
10.4 Characterizing Losses
10.5 References

11.0 Pulp Washing Models
11.1 Introduction
11.2 General Assumptions
11.3 Steady-State Models
 11.3.1 Black-Box Models
 11.3.1.1 Split Shower/Decanter Model
 11.3.1.2 Nordén’s Efficiency Factor Model
 11.3.1.3 Perfect Mixing Cells in Series (PMCS) Model
11.3.2 Fundamental Models
 11.3.2.1 Dispersion Models
 11.3.2.2 Mass Transfer Models
11.3.3 Statistical Models
11.3.4 Wash Press Models
11.3.5 Global Steady-State Models of Washer Systems

11.4 Dynamic Models
11.5 Model Applications
11.6 References

12.0 Pulp Consistency Control
12.1 Defining and Determining Pulp Consistency
 12.1.1 Determining Pulp Consistency: Sampling and Laboratory Analysis
 12.1.2 Choosing a Suitable Sampling Device and Deciding on its Positioning
 12.1.3 Choosing the Sampler
 12.1.4 Positioning the Sampling Valve in the Process
 12.1.5 Accurate Analysis of Consistency Samples
 12.1.6 Medium-Consistency Considerations in the Pulp Mill
 12.1.7 Homogeneity
 12.1.8 Flow
 12.1.9 Factors Affecting Flow
12.2 Typical Control Loop
 12.2.1 The pulp chest and its agitation
 12.2.2 The Stock Pump
 12.2.3 Dilution Water Supply
 12.2.4 Dilution Water Valve
 12.2.5 Valve Characteristics
 12.2.6 Water Injection
 12.2.7 Consistency Transmitter
 12.2.8 Controller
12.3 Planning the Consistency Control Loop
 12.3.1 Typical Dilution Stages
 12.3.2 Designing the Process to Achieve Correct Consistency at the Dilution Stage
 12.3.3 Double Dilution Stage
12.4 Consistency Application Examples
 12.4.1 Controlling Consistency after a Continuous Digester
 12.4.1.1 Transmitter Selection
 12.4.1.2 Control Strategy
 12.4.2 Controlling Consistency after the Blow Tank
 12.4.2.1 Transmitter Selection
 12.4.2.2 Control Strategy
 12.4.3 Controlling Consistency after a Medium-Density Tower
 12.4.4 After the MC Storage Tower
12.4.5 Controlling Consistency at a Refiner

12.5 Reference

13.0 Instrumentation for Cooking, Refining, Screening, and Washing

13.1 Flow Meters
13.1.1 Magnetic Flow Meter
13.1.2 Vortex Flow Meter
13.1.3 Differential Pressure Flow Meter
13.1.4 Thermal Flow Meter
13.1.5 Ultrasonic Flow Meters
13.1.6 Sonar Flow Meter
13.1.7 Coriolis Mass Flow and Density Meter
13.1.8 Turbine Flow Meter
13.1.9 Positive Displacement Flow Meter
13.1.10 Flow Meter Reference Table

13.2 Consistency Meters
13.2.1 Blade-Type Meters
13.2.2 Rotary Meters
13.2.3 Optical Meters
13.2.4 Microwave Meters

13.3 Fiber Analyzers
13.3.1 Classification (Bauer-McNett)
13.3.2 Freeness (Online & Manual)
13.3.3 Morphology, Dirt, and Shives

13.4 Kappa Analyzers
13.4.1 Manual and Auto-Titration Laboratory Testing
13.4.2 Online Kappa Analyzer
13.4.3 Single-Point and Multi-Point Analyzers

13.5 Temperature Sensors
13.5.1 Common Temperature Probes
13.5.2 Proper selection and installation of temperature probes

13.6 Level Sensors
13.6.1 Float transmitters
13.6.2 Bubbler transmitter
13.6.3 Differential pressure transmitter
13.6.4 Radar or microwave units
13.6.5 Ultrasonic or sonic meters
13.6.6 Radio frequency (RF) meters

13.7 Conductivity Sensors
13.7.1 Contacting or Potentiometric Sensors
13.7.2 Inductive or Toroidal Sensors

13.8 Dissolved Lignin Sensors

13.9 pH Meters

13.10 Entrained Air Meters
13.11 Liquor Solids Meters
13.12 Filtrate Extractors
13.13 Pressure and Vacuum Gauges
13.14 Sample Valves
13.15 References

14.0 Process Control of Brownstock Washers

14.1 Process Control Objectives
 14.1.1 Protection of Personnel, Equipment, and the Environment
 14.1.2 Variability Reduction
 14.1.3 Brownstock Washer Example

14.2 Three Fundamental Components of Single-Loop Control
 14.2.1 Sensors and Measurements
 14.2.2 Controllers
 14.2.3 Final Control Elements (Actuators)

14.3 Single-Loop Control Dynamics
 14.3.1 Process Disturbances
 14.3.2 Control System Disturbances
 14.3.3 Process Material Disturbances
 14.3.4 Short-Term versus Long-Term Disturbances
 14.3.5 Random versus Assignable Cause Disturbances
 14.3.6 Time-Domain Terms
 14.3.6.1 Deadtime
 14.3.6.2 Time Constant
 14.3.6.3 Gain
 14.3.6.4 Gain Expressions in a Single Loop
 14.3.6.5 Linear versus Nonlinear Process Gain

14.4 The PID Loop
 14.4.1 The Self-Regulating Loop
 14.4.2 The Non-Self-Regulating (Integrating) Loop
 14.4.3 Identifying Self-Regulating versus Integrating Loops in the Field

14.5 Controller Loop Pre-Tuning Considerations
 14.5.1 Process Modeling
 14.5.2 Open-Loop versus Closed-Loop
 14.5.3 Process Steps to Determine Process Gain, Deadtime, and Time Constant
 14.5.4 Step Test Method 1
 14.5.5 Step Test Method 2
 14.5.6 Defining Process Needs
 14.5.7 Common Loop Types
 14.5.8 Control Loop Block Diagram
 14.5.9 Tuning Parameter Gains

14.6 Common Tuning Methods
 14.6.1 Ziegler-Nichols and Cohen-Coon
14.6.2 Lambda Tuning
14.6.3 PID Tuning Relationship to Time-Domain Parameters
14.6.4 Ideal form of the PID Loop
14.6.5 Damping and Filtering
 14.6.5.1 Damping
 14.6.5.2 Filtering
14.6.6 Loop Performance
14.7 Laplace Transforms and Transfer Functions
14.8 Control Strategy and Design Considerations
 14.8.1 Feedback Control (FB)
 14.8.2 Feedforward Control (FF)
 14.8.3 PID Control
 14.8.4 Cascade Control
 14.8.5 Ratio Control
 14.8.6 Smith Predictor
 14.8.7 Calculator Algorithms and Function Blocks
14.9 Actuators: Final Control Elements
 14.9.1 Variable-Speed Motors
 14.9.2 Servomotors
 14.9.3 Stepper Motors
 14.9.4 Dampers
 14.9.5 Linearizing Nonlinear Actuators
14.10 Control Valves
 14.10.1 Linear Valves
 14.10.2 Equal Percentage Valves (EPV)
 14.10.3 Quick-Opening Valves (QOV)
 14.10.4 Valve Stiction
 14.10.5 Valve Hysteresis
 14.10.6 Valve Backlash
14.11 Control Valve Sizing
 14.11.1 Cv
 14.11.2 Volumetric Flow
 14.11.3 Mass Flow
 14.11.4 Compressible Liquids
 14.11.5 Stock Valve Sizing
 14.11.6 Stock Valve Sizing Example
14.12 Higher-Level Advanced Controls
 14.12.1 Advanced Regulatory Control
 14.12.2 Building a Dilution Factor Algorithm
 14.12.3 APC
 14.12.4 Higher-Level Control Technology and Strategy
 14.12.5 Model Predictive Control (MPC)
 14.12.6 First-Principles Models
14.12.6.1 Regression Models
14.12.6.2 Inferential Sensing
14.12.7 Model Fidelity Issues
14.12.7.1 Adaptive Control and Model Robustness
14.12.7.2 Robust Control
14.12.8 Statistical Process Control (SPC)
14.12.9 Multivariable Predictive Control (MVPC)
14.12.10 MVPC versus Single-Loop PID
14.12.11 SISO versus MIMO Applied to MVPC
14.12.12 Designing the MIMO
14.12.14 Building and Implementing the Model
14.12.15 Operator Training
14.12.16 Optimizing Functions
14.12.17 Gain Scheduling
14.12.18 Sustainability Model

14.13 Industrial Process Control Systems
14.13.1 DCS and PLC System Overlap
14.13.2 Analog Controllers
14.13.3 Minicomputers and Direct Digital Control (DDC)
14.13.4 Digital Technology
14.13.5 Architecture
14.13.6 Field Elements
 14.13.6.1 Sensors and Measurements
 14.13.6.2 Inferential Measurements
14.13.7 I/O Devices & Field Networks
14.13.8 Wiring Options
14.13.9 Field I/O Protocols
14.13.10 Wireless
14.13.11 Field Control
 14.13.11.1 Control on the Wire
 14.13.11.2 Single-Loop & Multi-Loop Controllers
 14.13.11.3 DCS and PLC Controllers
14.13.12 SCADA versus DCS
14.13.13 Considerations When Choosing a Controller Platform
14.13.14 Alarm Management
14.13.15 History Collection and Trending
14.13.16 Custom Graphics
14.13.17 Historians
14.13.18 Control Documentation
14.13.19 Further Reading

14.14 Discrete Logic
14.14.1 Ladder Logic
14.14.2 Boolean Logic
14.15 Regulatory Control Details
14.16 Control Narratives
14.17 Acknowledgements
14.18 References

15.0 Foam Control
15.1 History of Brownstock Defoamers
15.2 Foam Formation and Chemistry
15.3 Pulp Mill Foam
15.3.1 Problems Caused by Foam
15.3.2 Defoamer
 15.3.2.1 Defoamer Composition
 15.3.2.2 Entry and Spreading Coefficients
15.3.3 Mechanism
 15.3.3.1 Foam Destruction Mechanism
 15.3.3.2 Potential Mechanisms for Defoamer Exhaustion
15.4 Brownstock Washing Defoamer
15.5 Purpose of Brownstock Washer Defoamers
15.5.1 Drainage
 15.5.1.1 Drainage Mechanism 1
 15.5.1.2 Drainage Mechanism 2
 15.5.1.3 Drainage and Displacement Enhancement with Adjuncts
 15.5.1.4 Excessive Defoamer Usage and Excessive Drainage
15.5.2 Effects of Defoamer on Mill Operations
 15.5.2.1 Pulp Mill and Chemical Recovery Operations
 15.5.2.2 Paper Machine and Wastewater Treatment Operations
15.6 Pitch and Deposit Problems Caused or Exacerbated by Defoamer
15.7 Conclusions
15.8 References

16.0 Hot Stock Refining, Cleaning, and Screening
16.1 Screening
 16.1.1 Symbols
 16.1.2 Multistage Cascade Systems
 16.1.3 Standardized Screening Terminology and Equations
 16.1.4 Screening Basics
 16.1.4.1 Consistency
 16.1.4.2 Floc Disruption and Destabilization
 16.1.4.3 Screen Room Layout
 16.1.5 Screening High-Yield Stock
 16.1.6 Knot Removal
 16.1.7 Bleachable Grade/Low Kappa Brownstock Screening
16.2 Screening Equipment
 16.2.1 Knotters
16.2.1.1 Pressurized First-Stage Knotters
16.2.1.2 Secondary-Stage Vibratory Knotters
16.2.1.3 Secondary-Stage Pressurized Knot Drainer

16.2.2 Vibratory Screens
16.2.3 Gravity Centrifugal Screens
16.2.4 Pressurized Screens
16.2.5 Screen Plates
 16.2.5.1 Open Area
 16.2.5.2 Plate Types

16.3 Stock Cleaning
16.4 Hot Stock Refining
 16.4.1 Refining at Low Consistency for Shive Reduction
 16.4.2 Typical Hot Stock Refiner Installation
 16.4.3 Hot Stock Refiner Installation Including a Rejects Refiner
 16.4.4 Gap Control for Shive Reduction
 16.4.5 Hot Stock Refiner Plates
 16.4.6 Control Strategies for Low-Consistency Hot Stock Refining
 16.4.7 Measurement of Shive Content and Pulp Characteristics for Control

16.5 References

17.0 **Impact of Washer Performance upon Other Parts of the Mill**
17.1 Erratic Operation
 17.1.1 Screens
 17.1.2 Weak Black Liquor Solids and Evaporator Operation
 17.1.3 Oxygen Delignification Impacts

17.2 Carryover Impacts
 17.2.1 Bleaching
 17.2.2 Papermaking
 17.2.3 Environmental Concerns and Waste Treatment

17.3 Economics
17.4 References

18.0 **Valmet Brownstock Washing Solutions**
18.1 TwinRoll Presses
18.2 Valmet Vacuum filter type CC
18.3 Atmospheric diffuser (AD)
 18.3.1 Working principle
 18.3.2 Washing efficiency
 18.3.3 Applications

18.4 Pressure Diffuser (PD)
 18.4.1 Upflow Design
 18.4.2 Downflow Design
 18.4.2.1 Illustration of Design Details using a Downflow Pressure Diffuser
 18.4.2.2 Washing Principle
18.4.2.3 Pressure Diffuser Installation Options

18.5 Summary

19.0 GL&V® Brownstock Pulp Washing Equipment Design and Operation

19.1 Expressing Washing Performance

19.2 Selection of Washing Equipment

19.2.1 New Washing Line

19.2.2 Upgrade of Existing Washing Lines

19.3 Compact Press® Washer (CoP)

19.3.1 Equipment Description

19.3.2 Plant Design and Layout

19.4 Compaction Baffle Filter (CB)

19.4.1 Equipment Description

19.4.2 Design and Operating Advantages

19.4.3 Plant Layout

19.5 CORU-DEK® Vacuum Washer (CD)

19.5.1 Vacuum Washer Operation

19.5.2 General Guidelines

19.5.2.1 Vat Consistency and Submergence

19.5.2.2 Displacement Showers

19.5.2.3 Dropleg and Filtrate Tank Configuration

19.5.2.4 Other Design Considerations

19.5.3 Equipment Description

19.6 CORU-LOK™

19.7 References

20.0 ANDRITZ Washing Technology for Fiber Lines

20.1 Introduction

20.2 Washing Technology

20.2.1 Atmospheric Diffuser

20.2.1.1 Design

20.2.1.2 Operation

20.2.1.3 Modifications and Upgrades

20.2.2 Pressure Diffuser

20.2.2.1 Design and Operation

20.2.2.2 Turbo Pressure Diffuser

20.2.2.3 Operating Experiences

20.2.3 Drum Washers

20.2.3.1 Vacuum Drum Filter

20.2.3.2 Gas Free™ Filter

20.2.3.3 Drum Displacer® Washer

20.2.3.4 Segregated Filtrate Circulation

20.3 Washing systems

20.4 References
21.0 Kadant Black Clawson LLC Solutions: Chemi-Washer™ Design and Implementation

21.1 Introduction
21.2 Chemi-Washer™ Design

21.2.1 Design Considerations
21.2.2 Description of the Technology

21.2.2.1 Headbox and Formation
21.2.2.2 Dewatering and Washing
21.2.2.3 Filtrate Handling
21.2.2.4 Hood System
21.2.2.5 Drive System and Wire Operation

21.3 Implementation

21.3.1 Washer Configuration
21.3.2 Wash Water Selection
21.3.3 Chemi-Washer™ Control

22.0 Environmental Aspects of Brownstock Washing – Air

22.1 Air Emissions from Brownstock Washers and Applicable Regulations

22.1.1 Kraft Pulp Mills
22.1.2 Sulfite Pulp Mills
22.1.3 Semi-Chemical Pulp Mills
22.1.4 Treatment of Brownstock Washer Hood Vent Gases

22.2 Other Environmental Aspects of Brownstock Washing

22.3 References

23.0 Environmental Aspects of Brownstock Washing – Water

23.1 Best Management Practices (BMP)

23.1.1 Toxicity Impacts
23.1.2 Fish Reproduction Impacts

23.2 Effluent Reduction

23.3 Monitoring and Testing of Bleach Plant and Mill Effluents

23.4 Environmental Performance at Today’s Bleached Pulp Mills

23.4.1 Environmental Impacts

23.4.1.1 Bleached vs. Unbleached Mills
23.4.1.2 Holistic, Sum-Parameter Studies

23.4.2 Field Studies

23.4.2.1 Fish Reproduction Studies
23.4.2.2 Variability of Measurable Environmental Effects
23.4.2.3 Confounding Parameters and Literature Studies

23.5 Long-Term Field Assessments of Pulp Mill Effluent Effects

23.5.1 Background
23.5.2 Canadian Environmental Effects Monitoring Program
23.5.3 U.S. Long-Term Receiving Water Study

23.6 Conclusions

23.7 References