Chapter 1 - Overview

1-1 Advances in Equipment Imly New Opportunities
1-2 Definitions, including “Application Technologies”
1-3 Operational Efficiency and Product Uniformity
1-4 Chapter Overview
 1-4-1 Focus on equipment and basic procedures
 1-4-2 Focus on control and optimization
 1-4-3 Focus on additive performance
1-5 Related reading

Chapter 2 - Handling and dilution of papermaking additives

2-1 Introduction
 2-1-1 Product safety
 2-1-2 Spill and waste management
 2-1-3 Definitions
2-2 Starch
 2-2-1 Starch Types
 2-2-1-1 Native starch
 2-2-1-2 Cationic starch
 2-2-1-3 Anionic starch
 2-2-1-4 Amphoteric starch
 2-2-1-5 Other types of starch
 2-2-2 Physical forms, transport, handling and storage
 2-2-2-1 Liquid starch
 2-2-2-2 Dry starch
 2-2-3 Dry starch dispersion make-down process and preparation for use
 2-2-3-1 Dry starch slurry preparation
 2-2-3-2 Starch dissolution (cooking)
 2-2-3-2-1 Batch process
 2-2-3-2-2 Continuous process
 2-2-3-3 Control parameters for starch cooking processes
 2-2-3-3-1 Temperature
 2-2-3-3-2 Shear
 2-2-3-3-3 Pressure
 2-2-3-3-4 Solids
 2-2-3-3-5 Apparent viscosity
 2-2-3-3-6 Cooked starch quality control
 2-2-3-4 Mill storage after dispersion and cooking
 2-2-3-4-1 Starch retrogradation
 2-2-3-4-2 Temperature
 2-2-3-4-3 Storage pH
 2-2-3-4-4 Amylose content
 2-2-3-4-5 Microbiological activity
2-2-3-5 Starch dilution
2-2-3-6 Transferring of cooked starch

2-2-4 Key applications of starch in papermaking
 2-2-4-1 Strength
 2-2-4-2 Sizing
 2-2-4-3 Retention

2-3 Synthetic Polymers
 2-3-1 Delivery options
 2-3-1-1 Equipment materials of construction
 2-3-1-2 Bulk delivery and storage
 2-3-1-3 Semi-bulk delivery and storage
 2-3-1-4 Small packages delivery
 2-3-2 Polymer feed and delivery
 2-3-2-1 Batch processes
 2-3-2-2 In-line processes
 2-3-3 Aqueous solution polymers
 2-3-3-1 Storage and handling of solution polymers
 2-3-4 Solution polymers
 2-3-4-1 Dilution basics for solution polymers
 2-3-4-2 Mixing of solution polymers
 2-3-4-3 Effect of water quality
 2-3-4-4 Effect of temperature
 2-3-5 Emulsions
 2-3-5-1 Storage and handling of emulsions
 2-3-5-2 Mechanism of emulsion inversion and polymer dissolution
 2-3-5-3 Effect of temperature
 2-3-5-4 Effect of water quality
 2-3-5-5 Emulsion make-down processes
 2-3-6 Dry polyacrylamide powders (DPAMs)
 2-3-6-1 Dissolution and dilution of dry polymers
 2-3-6-2 Delivery and feed systems for dry polymers
 2-3-7 Brine dispersions

2-4 Emulsification and handling of sizing agents
 2-4-1 Storage of internal sizing agents
 2-4-1-1 Rosin sizes
 2-4-1-2 AKD
 2-4-1-3 ASA
 2-4-2 Preparation of ASA
 2-4-2-1 ASA emulsification
 2-4-2-2 Emulsion quality control
 2-4-2-3 Effect of the water quality on emulsification
 2-4-2-4 Post emulsification storage conditions

2-5 Pumping of chemical additives
 2-5-1 The heart of the process
 2-5-2 Types of pumps
 2-5-2-1 Reciprocating displacement pumps
 2-5-2-2 Rotating displacement pumps
 2-5-2-3 Kinetic pumps
2-5-3 In-line static mixers
2-5-4 Calibration of pumps using for metering of chemical additives

Chapter 3 - Mixology – Theory and Practice as Applied to Papermaking
3-1 Introduction
3-2 Liquid Flow
 3-2-1 Laminar and turbulent flow
 3-2-2 Reynolds number
 3-2-3 Newtonian and non-Newtonian fluids
3-3 Mixology in pulp and paper
 3-3-1 Mixing in chests
 3-3-2 Other mixing locations
3-4 Simulation methods
 3-4-1 Computational Fluid Dynamics
 3-4-2 Mathematics of CFD
 3-4-3 Over-riding benefits of the CFD visualization
3-5 Mixing and injection systems

Chapter 4 - Systems for Feeding and Mixing Wet End Additives
4-1 Background
 4-1-1 Feeding equipment
 4-1-2 Mixing phenomena
 4-1-3 Feeding locations in the wet end process
 4-1-4 Basics from polymer absorption and filler agglomeration
4-2 How to study the feeding of chemicals
 4-2-1 Laboratory devices
 4-2-2 Hydrodynamics in practice and in laboratory devices
 4-2-3 Other experimental devices
4-3 Different chemicals and chemical systems and their feeding to the process
 4-3-1 Retention agents
 4-3-2 Starch
4-4 Simultaneous feeding of different chemicals
 4-4-1 Retention agent and filler
 4-4-2 Starch and filler
 4-4-3 Sizing agent (ASA/AKD) and retention agent
 4-4-4 Others
4-5 Feeding of several chemicals after pressure screen close to each other or simultaneously–flash mixing reactor technology
 4-5-1 Feeding close to headbox
 4-5-2 Flash Mixing Reactor Technology
 4-5-3 Practical examples from the flash reactor technology
 4-5-4 Process requirements when feeding chemicals after pressure screen close to PM/BM headbox
4-6 Sustainability related to the new feeding technologies
4-7 Future development
Chapter 5 - Paper machine white-water systems and the paper machine wet end

5-1 Background and historical review
 5-1-1 The invention of paper
 5-1-2 Early mechanized papermaking
 5-1-3 Parts of a typical paper machine

5-2 Technological aspects of sheet forming
 5-2-1 How the volume of stock in a paper machine system affects process control
 5-2-2 Process control systems—general terms
 5-2-2-1 Real Time Sensors
 5-2-2-2 Virtual Sensors

5-3 Stock delivery systems
 5-3-1 Storage
 5-3-2 Mixing Systems

5-4 Addition of chemical additives to thick stock

5-5 Cleaning systems

5-6 De-aeration System

5-7 Headbox feed pump

5-8 Headbox screen

5-9 Headbox delivery pipe

5-10 Headbox

5-11 Forming
 5-11-1 Forming fabrics
 5-11-2 Former designs
 5-11-3 Drainage elements
 5-11-4 Forming board
 5-11-5 Table rolls
 5-11-6 Suction box/vacuum box
 5-11-7 Dandy roll
 5-11-8 Couch roll

5-12 Multi-wire paper machine systems
 5-12-1 Hybrid formers
 5-12-2 Twin-wire formers (gap formers)

Chapter 6 - Principles of Mixing Additives in Chests and Stock Lines

6-1 Charge effects on wet-end operations
 6-1-1 Zeta potential
 6-1-2 Charge demand
 6-1-3 Papermaking operations affected by charge
 6-1-4 Paper product attributes affected by charge

6-2 Charge monitoring and optimization
 6-2-1 Polyelectrolyte titrations of charge demand
 6-2-1-1 Streaming current endpoints
 6-2-1-2 Color endpoints
 6-2-2 Zeta potential monitoring
 6-2-2-1 Fiber-pad streaming potential
 6-2-2-2 Microelectrophoresis
6-3 Charge control systems
 6-3-1 Automatic titration to streaming current endpoint
 6-3-2 Thin-stock or thick-stock sampling points
6-4 Troubleshooting and useful test methods
 6-4-1 Detection and resolving of upset conditions
 6-4-2 Tracking down sources of instability
 6-4-3 Eliminating wasteful conditions
 6-4-4 Tuning of the charge balance

Chapter 7 - Control and optimization of retention
7-1 Retention of fine particles during paper forming
 7-1-1 Whitewater
 7-1-2 Calculating first pass retention
7-2 Factors impacting retention
7-3 Brief Overview of retention chemicals and their effects
 7-3-1 Charge neutralization
 7-3-2 Patching
 7-3-3 Bridging
 7-3-4 Complex and network flocculation
7-4 How to monitor retention
7-5 Retention control
 7-5-1 Automatic control
 7-5-2 Direct white water consistency control
 7-5-3 Multivariable control
7-6 Supporting controls
 7-6-1 Charge control
 7-6-2 Thick stock ash content control
7-7 Characteristics and practical results of retention control
 7-7-1 Grade changes, breaks, downtime and start-ups
 7-7-2 Practical results of control for different grades
7-8 Summary

Chapter 8 - Drainage strategies and micro/nanoparticle systems
8-1 Drainage rates and papermaking
 8-1-1 Water removal operations during papermaking
 8-1-2 Freeness of the furnish
8-2 Using wet end additives to promote dewatering
 8-2-1 Drainage aid mechanisms
 8-2-2 Charge neutralization to promote dewatering
 8-2-3 Charged patch effects to promote dewatering
 8-2-4 Polymer bridging to promote dewatering
 8-2-5 Enzymatic action to promote dewatering
8-3 Using micro- or nanoparticle additives for dewatering
 8-3-1 Properties of micro- and nanoparticles
 8-3-2 How micro-/ nanoparticles interact with cationic polymers
 8-3-3 Monitoring and optimization
Chapter 9 - Chapter 9 - Mineral fillers: Application strategies and value
9-1 Introduction
9-2 Key Fundamental filler characteristics
 9-2-1 Particle size distribution
 9-2-2 Particle morphology
 9-2-3 Surface area
 9-2-4 Refractive index
 9-2-5 Function of fillers
9-2-6 General product handling and storage
9-3 Product handling and storage for slurry products
 9-3-1 Unloading methods
 9-3-1-1 Gravity unloading
 9-3-1-2 Pressurization of the shipment vessel
 9-3-2 Pumping
 9-3-3 Feed system
 9-3-4 Storage tanks
 9-3-5 Agitators
 9-3-6 Pumps
 9-3-6-1 Centrifugal pumps
 9-3-6-2 Positive displacement pumps
 9-3-7 Piping
 9-3-8 Screening
 9-3-9 Cleaning programs (Boil-out, sterilization, and biocide addition)
9-4 Product handling and storage for powder/dry products
 9-4-1 Unloading methods
 9-4-1-1 Bags or super-sacks
 9-4-1-2 Bulk trucks and railcars
 9-4-2 Feed systems for dry minerals
9-5 Feed strategy
 9-5-1 Single feed point
 9-5-2 Two feed points
 9-5-3 Multiple feed points
9-6 Recent advances in application technologies
 9-6-1 Filler flocculation (Starch/CMC/Polymer) combination
 9-6-2 In-line PCCTM
 9-6-3 Novel fillers or filler technologies

Chapter 10 - Microbial control strategies
10-1 Biocides
 10-1-1 Why are biocides needed?
 10-1-2 Problem-causing organisms
 10-1-3 Classification of Biocides
10-2 Safety and regulatory
10-2-1 Common hazard properties of biocides
 10-2-1-1 Toxic
 10-2-1-2 Sensitizer
 10-2-1-3 Corrosive
 10-2-1-4 Combustible/flammable liquids
10-2-2 Protecting yourself against chemical hazards
10-2-3 Emergency response
10-2-4 Regulatory
10-3 Greener technologies
10-4 Designing a control program
 10-4-1 Engineering survey
 10-4-2 Microbiological survey
 10-4-3 Biocide selection
 10-4-4 Treatment locations and dosing
 10-4-5 Additive treatment
10-5 Monitoring

Chapter 11 - Optimization of dry strength additives
11-1 Introduction
 11-1-1 Dry strength basics
 11-1-2 Dry strength tests
 11-1-3 Goals of dry strength additive usage
11-2 General categories of dry strength additives
 11-2-1 Cationic glyoxalated polyacrylamide (GPAM)
 11-2-2 Cationic glyoxalated polyacrylamide (GPAM)
 11-2-3 Anionic dry strength additives
 11-2-4 Cationic PAM and amphoteric PAM dry strength resins
11-3 Storage and handling
 11-3-1 Bulk systems
 11-3-1-1 Special considerations for GPAM resins
 11-3-2 Metering and dilution
11-4 Application technology
 11-4-1 Addition point selection
 11-4-2 Direct versus indirect strength
 11-4-3 Wet end additive optimization
 11-4-4 Injection technology
 11-4-5 Program optimization
 11-4-5-1 Paper testing
 11-4-5-2 ROI calculators
Chapter 12 - Enzymatic technology for wet end implementation
12-1 Application of enzymes in the paper machine wet end
 12-2 Applications of cellulase in papermaking
 12-2-1 Cellulase as a refining aid
 12-2-2 Cellulase to enhance dewatering
 12-2-3 Cellulase treatment to modify other paper properties
12-3 Pectinase and xylanase usage in papermaking
 12-3-1 Pectinase treatment to reduce cationic demand
 12-3-2 Xylanase for other papermaking functions
12-4 Enzyme usage for pitch control on the paper machine
 12-4-1 Esterase usage for pitch control
 12-4-2 Lipoxygenase usage for pitch control
 12-4-3 Other enzymes for pitch and deposit control
 12-4-4 An enzyme-based assay for dispersed pitch
 12-4-5 Wet-strength development based on enzymatic treatment
12-5 Enzymatic de-inking
12-6 Enzymatic “boil-out” treatments
12-7 Key variables affecting enzyme usage in papermaking
 12-7-1 Temperature, pH, and contact time
 12-7-2 Enzyme half-life and deactivation issues

Chapter 13 - Wet end chemical applications - Paper machine chemical environment and interactions between chemical additives
13-1 Introduction
13-2 Impact of the chemical environment of paper machine performance
 13-2-1 Acid-base reactions and pH
 13-2-2 Esterification and hydrolysis
 13-2-3 Detrimental substances
 13-2-4 Conductivity
 13-2-5 Hardness
 13-2-6 Cationic demand
13-3 Interactions between wet end chemical additives
 13-3-1 Classification of interactions
 13-3-2 Reduction-oxidation reactions
 13-3-3 Physicochemical interactions
 13-3-3-1 Optical interactions
 13-3-3-2 Surface wetting properties – sizing
13-4 Conclusions