1. Introduction

2. Kraft Pulp and Black Liquor Production Worldwide

3. Properties Relevant to Evaporation
 3.1 Introduction to Black Liquor Properties
 3.2 Chemical Composition of Black Liquor
 3.2.1 Black Liquor Composition
 3.2.2 Molecular Size and Conformation of Kraft Lignin and Polysaccharides
 3.2.3 Extractives
 3.2.4 Terpenes
 3.3 Thermal and Transport Properties
 3.3.1 Viscosity
 3.3.1.1 Newtonian Behavior
 3.3.1.2 Impact of Temperature and Dry Solids Content on the Viscosity of Black Liquor
 3.3.1.3 Impact of Pulping Conditions
 3.3.1.4 Comparison of the Viscosity of Black Liquors from Pulping of Northern Hemisphere Woods and Eucalyptus
 3.3.1.5 Viscosity of Black Liquor from Pulping of Agricultural Residues and Other Nonwood Raw Materials
 3.3.1.6 Impact of Lignin Removal
 3.3.1.7 Non-Newtonian Behavior
 3.3.1.8 Reduction of Black Liquor Viscosity by Thermal Treatment
 3.3.1.9 Controlling Black Liquor Viscosity in the Mill Environment
 3.3.2 Boiling Point Rise
 3.3.3 Solubility Limit
 3.3.4 Density
 3.3.5 Enthalpy and Heat Capacity
 3.3.5.1 Heat Capacity
 3.3.5.2 Heat of Dilution
 3.3.5.3 Enthalpy
 3.3.6 Surface Tension
 3.3.7 Thermal Conductivity
 3.4 Summary
 3.5 Nomenclature

4. Evaporation Fundamentals
 4.1 Evaporator Hardware
 4.1.1
 4.2 Evaporator Equipment
 4.2.1 Long Tube Vertical (LTV) Evaporators
4.2.2 Falling Film Evaporators, Tube-Type Falling Film Evaporators
4.2.3 Falling Film Evaporators with Lamella-Type Heating Surfaces

4.3 Concentrator Equipment
4.3.1 Lamella-Type Falling Film Concentrators
4.3.2 Falling Film Concentrators with Tubular Heating Surfaces
4.3.3 Black Liquor Inside Tubes

4.4 Forced Circulation Concentrators

4.5 Direct-Contact Evaporation

4.6 Multiple-Effect Evaporator Concepts and Evaporator Configurations
4.6.1 Steam Consumption

4.7 Vapor Compression Evaporation

5. **Design Principles and Analysis for Black Liquor Evaporation**

5.1 Black Liquor Evaporator Mass & Energy Balances
5.1.1 Mass and Energy Balance Calculation Procedure
5.1.1.1 Introduction
5.1.1.2 Mass and Energy Effect Balances for Single Effect
5.1.1.3 Mass and Energy Balance Coupling Between Effects
5.1.1.4 Optimizing Operation
5.1.1.5 Complete Mass and Energy Balance for an LTV Evaporator Set

5.2 Evaporator Capacity and Steam Economy

5.3 Flow Characteristics in Evaporators and Concentrators

5.4 Descriptions of Flow Patterns in Vertical, Co-Current Vapor-Liquid Flow
5.4.1 Rising Film LTV Evaporators
5.4.2 Vertical Downflow Inside Tubes
5.4.3 Vertical Downflow Over Tube Heating Elements
5.4.4 Vertical Downflow Over Plate Heating Elements
5.4.5 Design Procedure
5.4.5.1 Design Basis and Input Variables
5.4.5.2 Calculation of the Required Heat transfer Area
5.4.5.3 Liquor Recirculation Rate
5.4.5.4 Flow Distribution
5.4.6 Flow Distributors in Black Liquor Falling Film Evaporators

5.5 Heat Transfer in Black Liquor Evaporators
5.5.1 Evaluating ΔT for Individual Evaporator Effects
5.5.2 Estimating Heat Transfer Coefficients for Black Liquor Evaporators
5.5.3 Terminology for Dimensionless Heat Transfer Correlations
5.5.4 Convective Heat Transfer Correlations for Black Liquor
5.5.5 Subcooled Flow Boiling Heat Transfer
5.5.6 Determination of Flow Quality
5.5.7 Nucleate Boiling Heat Transfer
5.5.8 Falling Film Heat Transfer, Black Liquor on Outside of Tubes
5.5.9 Wetting of Heat Transfer Surfaces by Falling Black Liquor Films [10]
5.5.10 Nucleation Film Destruction

5.6 Evaporator and Concentrator Design Considerations for Troubleshooting
5.6.1 Design of Evaporation Systems
5.6.2 Troubleshooting Evaporation Systems
5.6.3 Design Principles for Troubleshooting Evaporation Systems
 5.6.3.1 Principle 1
 5.6.3.2 Principle 2
 5.6.3.3 Principle 3
 5.6.3.4 Principle 4
 5.6.3.5 Principle 5
 5.6.3.6 Practical Considerations
5.6.4 Industry Examples
 5.6.4.1 Example 1 Surface Condenser Fouling
 5.6.4.2 Example 2 Vacuum System Leak
 5.6.4.3 Example 3 Lower Concentrator Product Solids
 5.6.4.4 Additional Examples
5.6.5 Conclusions

6. Auxiliary Processes

6.1 Tall Oil Soap Recovery
 6.1.1 Soap Quantities and Characteristics
 6.1.2 Solubility of Soap
 6.1.3 Physicochemical Characteristics of Soap
 6.1.4 Why Should the Tall Oil Soap Be Removed?
 6.1.5 How Soap Hurts Black Liquor Evaporators
 6.1.6 How Much Tall Oil Soap Is Present and Recoverable?
 6.1.7 Soap Recovery
 6.1.8 Foam Control
 6.1.8.1 Foam in First Filtrate Tank
 6.1.8.2 Soap Accumulation on Weak Liquor in Storage
 6.1.8.3 Removal of Soap in the Evaporators
 6.1.8.4 European Soap Recovery Practice
 6.1.8.5 Black Liquor Entrained in Soap

6.2 Fiber Removal
 6.2.1 Drum Filters
 6.2.1.1 Working Principle
 6.2.2 Design
 6.2.3 Basket Fiber Filters
 6.2.4 Who Should Have Responsibility for Operating the Fiber Filters?

6.3 Condensate Segregation
 6.3.1 Principles of Condensate Segregation
 6.3.2 Evaporator Condensate Segregation
 6.3.3 Digester Condensate Segregation
6.3.4 Kraft Mill Condensates

6.4 The Basics and Practice of Foul Condensate Stripping
 6.4.1 Why Strip Foul Condensates?
 6.4.2 What Condensates are Stripped?
 6.4.2.1 Batch Digester Blow Steam Condensate
 6.4.2.2 Batch Digester Relief Steam
 6.4.2.3 Continuous Digester Flash Steam
 6.4.2.4 Turpentine Decanter Underflow
 6.4.2.5 Evaporator Condensates
 6.4.2.6 Noncondensible Gas System Condensates
 6.4.3 Methods of Stripping
 6.4.3.1 Air Stripping for Total Reduced Sulfur
 6.4.3.2 Air Stripping for BOD
 6.4.3.3 Steam Stripping for Total Reduced Sulfur
 6.4.3.4 Steam Stripping for BOD
 6.4.4 Types of Columns
 6.4.5 Integrated Columns
 6.4.5.1 Fully Integrated
 6.4.5.2 Partially Integrated
 6.4.6 Column Operation
 6.4.6.1 Foaming
 6.4.6.2 Unstable Operation
 6.4.6.3 Steam Collapse
 6.4.6.4 Control of Contaminant Removal
 6.4.6.5 Fiber
 6.4.6.6 Plugging of Heat Exchangers
 6.4.6.7 Turpentine in Storage Tank
 6.4.7 Reflux Control
 6.4.8 Transport and Disposal of Contaminants
 6.4.9 Proper Operation Procedures
 6.4.10 Conclusion
 6.4.11 Acknowledgement

6.5 Methanol Purification
 6.5.1 Methanol Formation
 6.5.2 Methanol Capture
 6.5.3 Process Overview
 6.5.4 Modular Construction
 6.5.5 Process Description
 6.5.5.1 Topping System
 6.5.5.2 Red Oils Decanting
 6.5.5.3 Rectification System
 6.5.5.4 Methanol Product

6.6 Collecting and Burning Noncondensible Gases
 6.6.1 Composition of Noncondensible Gases
 6.6.2 Properties of Noncondensible Gases
7. Scaling and Fouling in Black Liquor Evaporators

7.1 Introduction

7.2 Sodium Carbonate-Sodium Sulfate Scales in Black Liquor Evaporators and Concentrators
 7.2.1 Influence of Composition on the Sodium-Carbonate-Sulfate Crystals Formed in Black Liquor
 7.2.2 Solubility of Sodium Salts in Black Liquor
 7.2.3 Crystallization in Black Liquor Concentrators
 7.2.4 Critical Solids Content
 7.2.5 Stable Operation of Crystallizing Evaporators
 7.2.6 Design Considerations for Black Liquor Concentrators
 7.2.7 Controlling Dicarbonate Crystal Populations
 7.2.8 Small ΔTs Avoid Dicarbonate Scaling
 7.2.9 Washing Soluble Scales

7.3 Sodium Oxalate Scaling

7.4 Calcium Carbonate and Pirssonite Scales
 7.4.1 Where Calcium-Based Scales are a Problem
 7.4.2 Chemical Processes in Calcium-Based Scaling
 7.4.3 What is Soluble Calcium?
 7.4.4 Impact of Process Conditions on Calcium Carbonate Fouling Rate
 7.4.5.1 Modified Kraft Pulping Processes
 7.4.5.2 How to Control Calcium Carbonate Scaling
7.5 Organic Foulants

7.6 Aluminosilicate Scales
 7.6.1 Aluminosilicate Chemistry
 7.6.2 Solubility and Precipitation Regions for Aluminisilicates
 7.6.3 Removing Aluminosilicate Scales

8. Research Needs in Black Liquor Evaporation

 8.1 Opportunities for Technology Enhancement

 8.2 Lower Cost Water Removal Methods

 8.3 Increasing Evaporation Rates with Existing Evaporators

9. TERMINOLOGY