Kraft Recovery Boilers

Table of Contents

Chapter 1 - Recovery Boilers in Kraft Pulp Mills

1.1 INTRODUCTION 1
1.2 THE KRAFT PROCESS 1
1.3 DEVELOPMENT HISTORY 4
1.4 GENERAL CHARACTERISTICS OF KRAFT RECOVERY BOILERS 6
1.5 DEVELOPMENT TRENDS 8
1.6 INCREASED EFFICIENCY AND POWER PRODUCTION 11
1.7 RECOVERY BOILER FUELS 13
1.8 ENVIRONMENTAL IMPACT 13
1.9 SAFETY 14
1.10 SUMMARY 14
1.11 ACKNOWLEDGEMENTS 14
1.12 REFERENCES 14

Chapter 2 - Recovery Boiler Chemistry

2.1 INTRODUCTION 1
2.2 CHEMICAL PROCESSES 1
 2.2.1 Liquor Composition 1
 2.2.2 Combustion Steps 2
2.3 SODIUM AND SULFUR CHEMISTRY 2
 2.3.1 Sodium and Sulfur Balance 2
 2.3.2 Equilibrium Considerations 4
 2.3.3 Reduction Efficiency 7
 2.3.4 Sodium and Sulfur Release during Black Liquor Burning 8
2.4 DUST FORMATION 10
2.5 CHLORINE AND POTASSIUM 13
2.6 SUMMARY 15
2.7 ACKNOWLEDGEMENTS 16
2.8 REFERENCES 16

Chapter 3 - Black liquor Properties

3.1 INTRODUCTION 1
3.2 CHEMICAL COMPOSITION OF BLACK LIQUOR 1
3.3 ANALYSIS METHODS FOR BLACK LIQUOR 4
 3.3.1 Dry Solids Content 4
 3.3.2 Elemental Analysis 4
 3.3.3 Calorific (Heating) Value 5
 3.3.4 Chemical Composition 5
3.4 THERMAL AND TRANSPORT PROPERTIES 6
 3.4.1 Density 6
Chapter 6 – Char Bed Processes

6.1 INTRODUCTION
6.2 CHAR BED COMPOSITION, SHAPE, AND STRUCTURE
6.3 CHEMICAL REACTIONS IN CHAR BEDS
 6.3.1 Carbon Burning
 6.3.2 Sulfur Reactions
 6.3.3 Other Reactions
6.4 HEAT TRANSFER IN CHAR BEDS
6.5 SMELT FORMATION AND TRANSPORT
6.6 CHAR BEDS AND FLOOR TUBE INTEGRITY
6.7 CHAR BED MODELING
6.8 CHAR BED COOLING
6.9 SUMMARY
6.10 ACKNOWLEDGEMENTS
6.11 REFERENCES

Chapter 7- Recover Boiler Air Systems

7.1 INTRODUCTION
7.2 COMPUTER MODELING
7.3 GOALS OF A WELL DESIGNED AIR SYSTEM
7.4 AIR ADMISSION
 7.4.1 Forced Draft Fans
 7.4.2 Air Heating
 7.4.3 Ducting
 7.4.4 Flow Measurement Devices
 7.4.5 Wind boxes
 7.4.6 Air Ports
 7.4.7 Dampers
 7.4.8 Air Port Rodders
7.5 GAS FLOW PATH
 7.5.1 Air Port Design
 7.5.2 Primary Air Level
 7.5.3 Secondary air levels
 7.5.4 Tertiary and Quaternary Air
 7.5.5 Dissolving Tank Vent Gases – Operating Issues
 7.5.6 Minimizing Excess Air
 7.5.7 Infiltration Air
 7.5.8 Furnace Nose Arch
 7.5.9 Superheaters
 7.5.10 Generating Bank
 7.5.11 Economizer
7.6 SUMMARY
7.7 ACKNOWLEDGEMENTS
7.8 REFERENCES
Chapter 8 – Recovery Boiler Air Emissions

8.1 INTRODUCTION

8.2 FLUE GAS COMPOSITION

8.3 SULFUR GAS EMISSIONS
 8.3.1 TRS and CO Emissions
 8.3.2 TRS Emissions from Direct Contact Evaporators
 8.3.3 TRS Emissions from Dissolving Tanks
 8.3.4 SO₂ Emissions

8.4 HCl EMISSIONS

8.5 NITROGEN OXIDE (NOₓ) Emissions
 8.5.1 Thermal-NO and Fuel-NO
 8.5.2 NO from Burning Black Liquor Droplets
 8.5.3 Fuel-Nitrogen Pathways to NO Emissions
 8.5.4 Factors influencing NO Emissions
 8.5.5 Smelt Nitrogen and Ammonia Emissions
 8.5.6 Post Combustion NO Reduction

8.6 PARTICULATE EMISSIONS
 8.6.1 Particulate Size Distribution
 8.6.2 Electrostatic Precipitators
 8.6.3 Resistivity of Precipitator Ash

8.7 HEAVY METALS EMISSIONS

8.8 PRACTICAL CONSIDERATIONS FOR RECOVERY BOILER EMISSIONS OPTIMIZATION

8.9 SUMMARY

8.10 NOMENCLATURE

8.11 ACKNOWLEDGEMENTS

8.12 REFERENCES

Chapter 9 – Deposit Formation and Plugging

9.1. INTRODUCTION

9.2. DEPOSITION PRINCIPLES

9.3. DEPOSIT TYPES

9.4. DEPOSIT MORPHOLOGY

9.5. PRECIPITATOR ASH

9.6. DEPOSIT CHEMISTRY

9.6.1. Carryover Composition

9.6.2. Fume Composition

9.6.3. Deposit Composition

9.6.4. Precipitator Ash Composition

9.6.5. Composition Units
9.7. DEPOSIT MELTING BEHAVIOUR

9.7.1. Melting Temperatures
9.7.2. Deposit Sticky Temperature Zone
9.7.3. Effects of Chloride and Potassium
9.7.4. Effects of Carbonates and Sulfates
9.7.5. Effects of Sulfides
9.7.6. Effects of Impurities
9.7.7. The Role of Liquid Phase

9.8. DEPOSIT GROWTH

9.9. DEPOSIT HARDENING AND MECHANICAL STRENGTH

9.9.1. Sintering
9.9.2. Deposit Strength

9.10. DEPOSIT COLORS

9.11. OCCURRENCE OF PLUGGING

9.11.1. Plugging in the Superheater
9.11.2. Plugging at the Generating Bank Inlet
9.11.3. Plugging in the Generating Bank
9.11.4. Plugging in the Economizer

9.12. SOOTBLOWERS AND DEPOSIT REMOVAL

9.13. PLUGGING PREVENTION

9.14. DEPOSIT MONITORING

9.15. DRAFT LOSS AND DEGREE OF PLUGGING

9.16. FACTORS AFFECTING FOULING AND PLUGGING
Chapter 10 - Sootblowers and Deposit Removal

10.1 BACKGROUND 1

10.2 SOOTBLOWERS 1
 10.2.1 Sootblower Nozzles 3
 10.2.2 Sootblower Jet Strength 8
 10.2.3 Sootblower Dimensions 11

10.3 INTERACTION OF SOOTBLOWER JETS WITH TUBES AND DEPOSITS 12

10.4 DEPOSIT STRENGTH AND REMOVABILITY 15

10.5 DETERMINING SOOTBLOWING EFFICIENCY 22

10.6 SOOTBLOWING OPTIMIZATION 25

10.7 DEPOSIT REMOVAL BY THERMAL SHOCK 26

10.8 LOW PRESSURE SOOTBLOWING TECHNOLOGY 27

10.9 SOOTBLOWER MAINTENANCE AND SAFETY 28

10.10 SUMMARY 30

10.11 ABBREVIATIONS 30

10.12 ACKNOWLEDGEMENTS 30

10.13 REFERENCES 30

Chapter 11 - Recovery Boiler Corrosion Environments

11.1 INTRODUCTION 1

11.2 CORROSION PRINCIPLES 2
 11.2.1 Corrosion Kinetics 2

11.3 ALLOYING FOR CORROSION RESISTANCE 3

11.4 CORROSIVITY OF FLUE GASES 3
 11.4.1 Reduced Sulfur Gases 4
 11.4.2 Elemental Sulfur and Polysulfides 6
 11.4.3 Oxidized Sulfur Gases 6
 11.4.4 Hydrogen Chloride and Chlorine 7

11.5 CORROSIVITY OF FIRESIDE DEPOSITS 7

11.6 CORROSION ENVIRONMENTS IN THE LOWER FURNACE 7
Chapter 13 - Smelt-Water Explosions

13.4 **SMELT-WATER EXPLOSIONS** 10
- 13.4.1 Nature of Smelt-Water Explosions 10
- 13.4.2 Explosion Mechanisms 11
- 13.4.3 Energetics of Explosions 13
- 13.4.4 Triggering 14
- 13.4.5 Experience with Smelt-Water Explosions in Recovery Boilers 15
- 13.4.6 Experience with Dissolving Tank Explosions 17

13.5 **PREVENTION OF SMELT-WATER EXPLOSIONS** 17
- 13.5.1 Emergency Shutdown Procedure 18
- 13.5.2 Leak Avoidance 18
- 13.5.3 Leak Detection 19
- 13.5.4 Safe Firing of Black Liquor 20
- 13.5.5 Miscellaneous Water Sources 21
- 13.5.6 Prevention of Dissolving Tank Explosions 21

13.6 **RECOVERY BOILER SAFETY PROGRAMS** 22
- 13.6.1 Training 22
- 13.6.2 Boiler Integrity Management 22
- 13.6.3 Audits 23

13.7 **SUMMARY** 23

13.8 **ACKNOWLEDGEMENTS** 24

13.9 **EDITOR’S NOTES** 24

13.10 **REFERENCES** 25

Chapter 14 - Recovery Boiler Design

14.1 **INTRODUCTION** 1

14.2 **RECOVERY BOILER DESIGN** 1
- 14.2.1. General Features of Recovery Boilers 1
- 14.2.2. Design Objectives 3
- 14.2.3. Data Required for Design 3
- 14.2.4. Recovery Boiler Furnace 4
- 14.2.5. Convective Heat Recovery Section 7
- 14.2.6. Hearth Heat Release Rate 9
- 14.2.7. Furnace Cross-Sectional Area 10
- 14.2.8. Furnace Height 10
- 14.2.9. Screen Tubes 10
- 14.2.10. Nose Arch 10
- 14.2.11. Superheater Inlet Gas Temperature 10
- 14.2.12. Superheater Surface Area 11
- 14.2.13. Steam Generating Bank 11
- 14.2.15. Materials of Construction 12

14.3 **PERIPHERAL EQUIPMENT** 13

14.4 **SUMMARY** 17

14.5 **ACKNOWLEDGEMENTS** 17

14.6 **REFERENCES** 17

Chapter 15 - Automatic Control of Recovery Boilers

15.1 **INTRODUCTION** 1
Chapter 15 - Control Objectives and Strategies

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.2.1</td>
<td>Char Bed Stability</td>
<td>1</td>
</tr>
<tr>
<td>15.2.2</td>
<td>Other Control Objectives and Constraints</td>
<td>2</td>
</tr>
</tbody>
</table>

Parameters That Impact Automatic Control

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.3.1</td>
<td>Design, Operating, and Disturbance Parameters</td>
<td>3</td>
</tr>
<tr>
<td>15.3.2</td>
<td>Fuel Parameters</td>
<td>4</td>
</tr>
<tr>
<td>15.3.3</td>
<td>Heating Value of Fuel and Air</td>
<td>5</td>
</tr>
</tbody>
</table>

Control Strategies

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.4.1</td>
<td>Black Liquor Flow Control Strategies</td>
<td>5</td>
</tr>
<tr>
<td>15.4.2</td>
<td>Consumed-Air Strategy</td>
<td>6</td>
</tr>
<tr>
<td>15.4.3</td>
<td>Liquor Spray Control Strategy</td>
<td>7</td>
</tr>
</tbody>
</table>

Black-Out Control

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.5.</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

Automatic Control Logic

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.6.</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

Handling Load Variations

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.7.</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Other Features

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.8.</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Practical Applications

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.10.</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Conclusions

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.11.</td>
<td>REFERENCES</td>
<td>12</td>
</tr>
</tbody>
</table>

Chapter 16 - Recovery Boiler Material and Energy Balances

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1.</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>16.2.</td>
<td>FORMULATION PROCEDURES</td>
<td>2</td>
</tr>
<tr>
<td>16.2.1</td>
<td>Calculation Boundaries</td>
<td>2</td>
</tr>
<tr>
<td>16.2.2</td>
<td>Inputs and Outputs</td>
<td>3</td>
</tr>
<tr>
<td>16.3.</td>
<td>MATERIAL BALANCE</td>
<td>4</td>
</tr>
<tr>
<td>16.3.1</td>
<td>Balance Formulation</td>
<td>4</td>
</tr>
<tr>
<td>16.3.2</td>
<td>Air Requirement</td>
<td>4</td>
</tr>
<tr>
<td>16.3.3</td>
<td>Moles of Flue Gas</td>
<td>4</td>
</tr>
<tr>
<td>16.3.4</td>
<td>Output Streams</td>
<td>4</td>
</tr>
<tr>
<td>16.3.5</td>
<td>Material Balance Illustration</td>
<td>4</td>
</tr>
<tr>
<td>16.4.</td>
<td>ENERGY BALANCE</td>
<td>9</td>
</tr>
<tr>
<td>16.4.1</td>
<td>Heating Value of Black Liquor</td>
<td>9</td>
</tr>
<tr>
<td>16.4.2</td>
<td>Heat Inputs</td>
<td>9</td>
</tr>
<tr>
<td>16.4.3</td>
<td>Heat Outputs (Losses)</td>
<td>9</td>
</tr>
<tr>
<td>16.5.</td>
<td>BOILER PERFORMANCE CALCULATIONS</td>
<td>15</td>
</tr>
<tr>
<td>16.6.</td>
<td>STEAM PRODUCTION</td>
<td>17</td>
</tr>
<tr>
<td>16.7.</td>
<td>PARAMETRIC EFFECTS</td>
<td>18</td>
</tr>
<tr>
<td>16.8.</td>
<td>AVAILABLE MATERIAL AND ENERGY BALANCE PROGRAMS</td>
<td>21</td>
</tr>
<tr>
<td>16.9.</td>
<td>SUMMARY</td>
<td>21</td>
</tr>
<tr>
<td>16.10.</td>
<td>ACKNOWLEDGEMENTS</td>
<td>22</td>
</tr>
<tr>
<td>16.11.</td>
<td>REFERENCES</td>
<td>22</td>
</tr>
</tbody>
</table>

APPENDIX A - Material & Energy Balance Calculations – INPUTS | 23 |
APPENDIX B - Material & Energy Balance Calculations – OUTPUTS | 25 |