CONTENTS

Preface

Contributing Authors

1. INTRODUCTION
 Peter W. Hart and Andrew Wisner
 1.1. IMPORTANCE OF THE KILN AND RECAUSTICIZING
 1.1.1. The Kiln
 1.1.2. Causticizing
 1.2. ENVIRONMENTAL PERFORMANCE
 1.3. HISTORY of Lime Making
 1.3.1. Kiln Improvements
 1.3.2. Recausticizing Improvements
 1.4. CEMENT KILNS VERSUS KRAFT MILL LIME KILNS
 1.5. LAYOUT OF THIS BOOK
 1.6. CONTRIBUTORS TO THIS BOOK
 1.7. SUMMARY
 1.8. LITERATURE CITED

2. THE KRAFT CHEMICAL RECOVERY LIQUOR CYCLE
 Peter W. Hart
 2.1. THE RECOVERY CYCLE
 2.1.1. Black Liquor
 2.1.2. Green Liquor
 2.1.3. White Liquor
 2.1.4. Steam and Power Production
 2.2. OPERATIONAL PROBLEMS
 2.3. ENVIRONMENTAL CHALLENGES
 2.3.1. Air Emissions
 2.3.1.1. Particulate Emissions
 2.3.1.2. Total Reduced Sulfur Emissions
 2.3.1.3. Sulfur Dioxide Emissions
 2.3.1.4. Gaseous Emissions and Volatile Organic Compounds
 2.3.2. Water Reuse (Partial Mill Closure)
 2.3.3. Nonprocess Elements
 2.3.3.1. Alkali-Soluble Nonprocess Elements
 2.3.3.2. Partially Alkali-Soluble Nonprocess Elements
 2.3.3.3. Alkali-Insoluble Nonprocess Elements
 2.4. MODERN SYSTEMS
3. KILN CHEMISTRY
 Peter W. Hart

3.1. LIME QUALITY
 3.1.1. Crystalline Structure
 3.1.2. Nodule Size

3.2. IMPURITIES
 3.2.1. Sodium
 3.2.1.1. Water-Soluble Sodium
 3.2.1.2. Water-Insoluble Sodium
 3.2.1.3. Guarded Sodium
 3.2.1.4. Sodium Enrichment
 3.2.2. Sulfur
 3.2.2.1. Sulfur Dioxide
 3.2.2.2. Total Reduced Sulfur

3.3. IMPACT OF IMPURITIES UPON REFRACTORY BRICKS

3.4. DUSTING

3.5. RING AND BALL FORMATION

3.6. SUMMARY

3.7. LITERATURE CITED

4. LIME KILN SYSTEM
 Richard P. Manning, Glenn M. Hanson III, and Claus Jensen-Holm

4.1. OLDER KILN DESIGN

4.2. PRODUCT COOLERS
 4.2.1. Satellite Cooler
 4.2.2. Insulated Rotating Cooler
 4.2.3. Stationary Cooler

4.3. DUST COLLECTORS

4.4. EXTERNAL DRYERS
 4.4.1. Flash Drying of Lime Mud
 4.4.2. External Dryer with Recirculation System

4.5. LIME KILN REFRACTORY SYSTEMS
 4.5.1. Feed End
 4.5.2. Mid Kiln
 4.5.3. Burning Zone
 4.5.4. Brick Systems
 4.5.5. Tumblers
4.5.6. Discharge Dam
4.5.7. Refractory Issues
4.6. GENERAL KILN MAINTENANCE CONCERNS
4.6.1. Chain Systems
4.6.2. Refractory
4.6.3. Kiln Shell

5. LIME KILN: COMBUSTION AND HEAT TRANSFER
Richard P. Manning

5.1. COMBUSTION IN LIME KILNS
5.2. FUEL/AIR MIXING
 5.2.1. Principles of Combustion
 5.2.2. Turbulent Jet Theory
 5.2.2.1. Region 1: Potential Core
 5.2.2.2. Region 2: Mixing and Transition
 5.2.2.3. Region 3: Fully Developed
5.3. COMBUSTION MODELING
 5.3.1. Physical Modeling
 5.3.2. Computational Fluid Dynamic Modeling
5.4. LIME KILN BURNER DESIGN
5.5. HEAT TRANSFER
5.6. IMPACT OF AVAILABLE OXYGEN
5.7. FLAME LOCATION
5.8. TRADITIONAL FUELS
 5.8.1. Oil Combustion
 5.8.2. Natural Gas Combustion
 5.8.3. Switching Between Oil and Natural Gas Firing
 5.8.4. Flame Detection: Oil versus Gas
5.9. ALTERNATIVE FUELS
5.10. PROBLEMS IN LIME KILNS RELATED TO COMBUSTION AND HEAT TRANSFER
 5.10.1. Refractory Damage
 5.10.2. Ringing
 5.10.3. High Feed-End Temperatures
 5.10.3.1. Insufficient Oxygen
 5.10.3.2. High Dry-Mud Solids
 5.10.3.3. Overloading the Kiln
 5.10.4. High Energy Usage
 5.10.5. Poor Product Quality
5.11. LITERATURE CITED
6. FLAME SAFETY SYSTEMS
 Cliff Rennie
 6.1. COMBUSTION
 6.2. BURNER MANAGEMENT SYSTEM
 6.3. COMPLIANCE
 6.3.1. National Fire Protection Association
 6.3.2. NFPA 86-19: Standard for Ovens and Furnaces
 6.3.3. NFPA 85-19: Boiler and Combustion Systems Hazards Code
 6.3.4. Key Changes to NFPA 86
 6.4. DESIGN STANDARDS
 6.4.1. Requirements from Design Standards
 6.4.2. Allowances in Design Standards
 6.5. KEY FLAME SAFETY SYSTEM COMPONENTS
 6.5.1. Burner
 6.5.2. Natural-Gas Valve Train
 6.5.3. Oil Valve Train
 6.5.4. Flame Scanners
 6.5.4.1. Flame Scanner Location
 6.5.4.2. Infrared Flame Scanners
 6.5.4.3. Ultraviolet Flame Scanners
 6.5.3. Temperature Sensors
 6.5.4. BMS Panel
 6.6. HOW TO IMPROVE THE PLANT/BMS RELATIONSHIP
 6.6.1. Testing
 6.6.2. Training
 6.6.3. Maintenance and Audits

7. ALTERNATIVE FUELS
 Peter W. Hart
 7.1. PETROLEUM COKE
 7.1.1. Potential Environmental Issues
 7.1.1.1. Sulfur
 7.1.1.2. Total Reduced Sulfur
 7.1.1.3. Nitrogen Oxides
 7.1.1.4. Carbon Monoxide
 7.1.1.5. Particulate Matter
 7.1.1.6. Total Hydrocarbons and Sulfuric Acid
 7.1.1.7. Vanadium and Other Trace Metals
 7.1.2. Petcoke Handling at a Mill Site (Unloading, Storage, and Feeding)
7.2. PULPING/RECOVERY BY-PRODUCTS
 7.2.1. Crude Tall Oil Fuels
 7.2.2. Tall Oil Pitch
 7.2.3. Methanol
 7.2.4. Crude Sulfate Turpentine
 7.2.5. Lignin

7.3 WOODY BIOMASS
 7.3.1. Pulverized Wood and Bark
 7.3.2. Torrefaction of Woody Biomass: Biochar or Biocoal

7.4. GASIFICATION

7.5. BIO-OILS
 7.5.1. Vegetable Oils
 7.5.2. Animal Fat
 7.5.3. Glycerin: A Biodiesel By-product
 7.5.4. Pyrolysis Oils

7.6. HYDROGEN

7.7. TIRE-DERIVED FUELS

7.8. SUMMARY

7.9 LITERATURE CITED

8. CHAIN SYSTEM DESIGN
 J. Peter Gorog
 8.1. BACKGROUND
 8.2. FUNCTION OF THE CHAIN SYSTEM
 8.3. LAYOUT OF THE CHAIN SYSTEM
 8.4. HEAT TRANSFER IN THE CHAIN SYSTEM
 8.5. APPROACH USED TO MODEL A CHAIN SYSTEM
 8.6. KILN SELECTED TO ILLUSTRATE CHAIN SYSTEM DESIGN
 8.7. IMPACT OF CHAIN SYSTEM ON KILN PERFORMANCE
 8.8. CHAIN SYSTEM DESIGN
 8.9. CONCLUSIONS
 8.10. LITERATURE CITED

9. SELECTION AND LAYOUT OF REFRACTORIES FOR LIME SLUDGE KILNS
 J. Peter Gorog and Chris L. Macey
 9.1. INTRODUCTION
 9.2. REFRACTORY MATERIALS
 9.2.1. Brick Shapes
 9.2.2. Monolithic Materials
 9.3. MORTARS
9.4. PHYSICAL PROPERTIES
 9.4.1. Refractoriness
 9.4.2. Bulk Density
 9.4.3. Apparent Porosity
 9.4.4. Cold Crushing Strength
 9.4.5. Modulus of Rupture
 9.4.6. Permanent Linear Change (After Reheating)
 9.4.7. Refractoriness Under Load
 9.4.8. Abrasion Resistance
 9.4.9. Thermal Shock Resistance
 9.4.10. Thermal Conductivity
 9.4.11. Linear Thermal Expansion
 9.4.12. Recommended Values for Physical Properties

9.5. CHEMICAL ATTACK BY LIME MUD

9.6. LAYOUTS OF REFRACTORY LININGS
 9.6.1. Discharge Zone
 9.6.2. Calcining Zone
 9.6.3. Preheating Zone
 9.6.4. Drying Zone

9.7. IMPACT OF REFRACTORY INSULATION ON KILN PERFORMANCE

9.8. ROTARY KILN BRICK INSTALLATION

9.9. COMMON CAUSES OF REFRACTORY FAILURES
 9.9.1. Poor Installation
 9.9.2. Thin Bricks
 9.9.3. Localized Overheating
 9.9.4. High Ovality
 9.9.5. Spalling

9.10. SUMMARY

9.11. LITERATURE CITED

10. KILN EXHAUST GAS TREATMENT AND ENVIRONMENTAL CONTROLS
 Benjamin Fierman, Magnus Rundqwist, Scott Blankenship, Peter W. Hart, and Glenn M. Hanson III

10.1. CYCLONES
 10.1.1. Basic Cyclone Operation
 10.1.2. Potential Issues with Cyclone Installation
 10.1.3. Critical Design Factors
 10.1.4. Types of Cyclones
 10.1.5. Limitations of a Cyclone

10.2. HISTORY OF ELECTROSTATIC PRECIPITATION
10.2.1. Early Experimentation and Developments
10.2.2. Pulp Mill Lime Kiln Electrostatic Precipitators

10.3. THE ELECTROSTATIC PRECIPITATION PROCESS
10.4. WHY USE ELECTROSTATIC PRECIPITATORS?
10.5. TYPICAL ELECTROSTATIC PRECIPITATOR PROCESS PARAMETERS
10.6. ELECTROSTATIC PRECIPITATOR DESIGN
10.7. ELECTROSTATIC PRECIPITATOR PERFORMANCE CALCULATION
10.8. SAMPLE EMISSIONS DATA
10.9. CLOSING COMMENTS ABOUT ELECTROSTATIC PRECIPITATORS
10.10. WET SCRUBBERS
 10.10.1. Equipment and Technologies
 10.10.1.1. Quench Section
 10.10.1.2. Scrubber Vessels
 10.10.1.3. Impingement Scrubbers
 10.10.2. Multistage Wet Scrubbers
 10.10.2.1. Packed Bed
 10.10.2.2. Subcooling Stage
 10.10.2.3. Acid-Gas Absorption Stage
 10.10.2.4. Multiple Venturi Stage
 10.10.3. Mist Eliminators
10.11. WET SCRUBBER PERFORMANCE
10.12. OPERATION AND MAINTENANCE ISSUES
10.13. ACKNOWLEDGEMENT
10.14. LITERATURE CITED

11. FANS
 Peter W. Hart
11.1. PRIMARY AIR FAN
11.2. INDUCED DRAFT FAN
 11.2.1. Induced Draft Fan as a Production Rate Limitation
 11.2.2. Induced Draft Fan Operating Principles
 11.2.3. Induced Draft Fan Location
 11.2.3.1. Wet or Cold Induced Draft Fan
 11.2.3.2. Hot or Dry Induced Draft Fan
11.3. TYPICAL OPERATION PROBLEMS OF INDUCED DRAFT FANS
 11.3.1. Dusting
 11.3.2. Imbalance
 11.3.3. Vibration
 11.3.4. High Maintenance Costs
11.4. LITERATURE CITED
12. LIME KILN CONTROL AND OPTIMIZATION
Richard P. Manning and Glenn M. Hanson III
12.1. KILN OPERATION
12.1.2. Balance of Inventory and Product Quality Management
12.1.2. Kiln Stability
12.1.3. Operations Troubleshooting
 12.1.3.1. Rings and Balls
 12.1.3.2. Dusting and Smelting
 12.1.3.3. Kiln Excess Oxygen Concentration
12.2. PROCESS OPTIMIZATION: BENCHMARKING
12.3. PROCESS OPTIMIZATION: NO OR LITTLE CAPITAL COSTS
 12.3.1. Dry Mud Solids
 12.3.2. Feed-End O₂
 12.3.3. Increased Lime Availability (Reduced Inerts)
 12.3.4. Convert to Oil Firing
12.4. PROCESS OPTIMIZATION: CAPITAL INVESTMENT
 12.4.1. Installing Product Coolers
 12.4.2. Installing a Cyclone
 12.4.3. Upgrade Chain System
 12.4.4. Upgraded Kiln Refractory
12.5. SUMMARY

13. KILN PROCESS CONTROL
Peter W. Hart
13.1. HEAT BALANCE
 13.1.2. Losses Associated with the Fuel Heating Value (Eqs. 13.7 and 13.8)
 13.1.3. Energy Balance (Eq. 13.9)
 13.1.4. Heat Rate Definition (Eq. 13.10)
 13.1.5. Heat Rate Calculation Using the Heat Loss Method (Eq. 13.11)
 13.1.6. Excess Air Calculations (Eqs. 13.12–13.16)
 13.1.8. Typical Heat Rate Calculation Parameters
13.2. CONTROL SYSTEM DEVELOPMENT
 13.2.1. Manual Control
 13.2.2. Phenomenological Control
 13.2.3. Supervisory Control
 13.2.4. Fuzzy Logic Control
 13.2.5. Model Predictive Control
13.2.6. Neural Network or Adaptive Model Predictive Control

13.3. GOALS OF AUTOMATION

13.4. LITERATURE CITED

14. MECHANICAL MAINTENANCE, MEASURES, AND ALIGNMENT
Andrew Wisner and Tom Zhang

14.1. COMMON MECHANICAL PROBLEMS
 14.1.1. Kiln Alignment
 14.1.2. Kiln Thrust
 14.1.3. Kiln Crank
 14.1.4. Kiln Shell Ovality
 14.1.5. Lubrication

14.2. DATA COLLECTION
 14.2.1. General Inspection
 4.2.1.1. Daily Inspections
 4.2.1.2. Semiweekly Inspections
 4.2.1.3. Weekly Inspections
 4.2.1.4. Monthly Inspections
 4.2.1.5. Quarterly Service
 4.2.1.6. Semiannual Service
 4.2.1.7. Annual Inspections
 14.2.2. Ovality, Creep, and Temperature: General Information
 14.2.2.1. Measuring Creep, Relative Motion, and Tire Migration
 14.2.2.2. Importance of and Where to Measure Shell and Tire Temperature
 14.2.2.3. General Information and How to Measure Ovality
 14.2.2.4. Tire Mounted Directly Onto the Kiln Shell
 14.2.3. Kiln Alignment
 14.2.3.1. Methodologies
 14.2.3.2. Survey Frequency
 14.2.4. Kiln Crank and Shell Profile
 14.2.4.1. Kiln Crank
 14.2.4.2. Shell Profile
 14.2.4.3. Measurements of Kiln Crank and Shell Profile
 14.2.4.4. Effects of Excessive Kiln Shell Crank and Shell Profile and Correction
 14.2.5. Mechanical Kiln Load
 14.2.5.1. Hertz Pressure
 14.2.5.2. Tire Bending Stress
 14.2.5.3. Tire Ovality

14.3. TYPICAL KILN MAINTENANCE
14.3.1. Thrust Adjustments
14.3.2. Correcting Creep and Ovality
14.3.3. Upgrade Options for Tires Mounted Directly Onto the Kiln Shell
14.3.4. Correcting Tire Wobble (Axial Misalignment)
14.3.5. Correcting Carrying Roller and Tire Face Profiles
14.3.6. Ring Gear Runout
14.3.7. Correcting Kiln Shell Profile or Crank Issues
14.3.8. Inspecting a Kiln on a Shutdown: General Tips
 14.3.8.1. Carrying Roller Housings
 14.3.8.2. Gearing and Drive System
 14.3.8.3. Burner and Discharge Hood
 14.3.8.4. Feed Screw and Feed Hood
 14.3.8.5. Chain Section
 14.3.8.6. Product Coolers

14.4. CONCLUSIONS

15. RECAUSTICIZING CHEMISTRY
 Peter W. Hart
 15.1. PRINCIPLE REACTIONS
 15.2. IMPACT OF NONPROCESS ELEMENTS, SULFIDITY, AND IONIC STRENGTH
 15.3. COMMON TERMINOLOGY
 15.4. IMPACT OF LIME TYPE AND QUALITY
 15.5. REACTION KINETICS
 15.6. TYPICAL OPERATING CONDITIONS
 15.7. SUMMARY
 15.8. LITERATURE CITED

16. GREEN LIQUOR SCALE
 Peter W. Hart
 16.1. PIRSSONITE
 16.1.1. Solubility
 16.1.2. Proposed Formation Mechanisms
 16.1.3. Guidelines to Minimize Pirssonite Formation
 16.1.3.1. Avoiding the Death Cycle
 16.1.3.2. Green Liquor Scale Reduction Methods
 16.1.3.3. Green Liquor Line Management
 16.1.3.4. Daily Operating Practices
 16.2. CALCITE
 16.2.1. Calcite Formation Mechanisms
16.2.2. Calcite Prevention
 16.2.2.1. Physical Prevention Methods
 16.2.2.2. Polymer Application
 16.2.2.3. External Methodologies

16.3. SODIUM ALUMINOSILICATES

16.4. METALS REMOVED IN GREEN LIQUOR DREGS

16.5. CONCLUSIONS

16.6. LITERATURE CITED

17. RECAUSTICIZING EQUIPMENT AND OPERATION
 John B. Johnson II

17.1. THE SLAKER
 17.1.1. Feed to the Slaker
 17.1.2. Lime Silos
 17.1.3. Scrubbers
 17.1.4. Cyclone Feeder
 17.1.5. Steam Sparger
 17.1.6. The Slaker Mixing Bowl
 17.1.7. Instrumentation
 17.1.8. Bowl Temperature Control
 17.1.9. The Classifier
 17.1.10. Grit Disposal
 17.1.11. Slaker Operation
 17.1.12. Troubleshooting the Slaker
 17.1.12.1. Varying Green Liquor Strength and Varying Lime Availability
 17.1.12.2. Grit
 17.1.12.3. Mechanical

17.2. AGITATED TANKS
 17.2.1. Tank Size
 17.2.2. Tank Material
 17.2.3. Baffles
 17.2.4. Agitator Selection
 17.2.5. Agitator Placement
 17.2.6. Causticizers
 17.2.7. Causticizer Feed Tank
 17.2.8. Green Liquor Stabilization Tank
 17.2.9. The Dregs Tank
 17.2.10. The Mud Mix Tank
 17.2.11. The Lime Mud Reclaim Tank
 17.2.12. Lime Mud Storage
17.3. SEDIMENTATION PRODUCTION OF LIQUORS

17.3.1. The Tank
17.3.2. The Drive
17.3.3. Drive Control
17.3.4. Rake Lift
17.3.5. Shaft and Rakes
17.3.6. The Feedwell
17.3.7. Launder and Bustle Pipes
17.3.8. Multiple-Compartment Clarifiers
17.3.9. Green-Liquor Clarification
17.3.10. Troubleshooting the Green-Liquor Clarifier
 17.3.10.1. Feed Rate Too High
 17.3.10.2. High Dregs Content or Colloidal Dregs in the Feed Liquor
 17.3.10.3. Insufficient Underflow Rate and High Dregs Bed Level
 17.3.10.4. Air in the Feed Liquor
 17.3.10.5. Organics
 17.3.10.6. Density, Flow, and Temperature Variations
17.3.11. Dregs Washing
17.3.12. White-Liquor Clarification
17.3.13. Troubleshooting the White-Liquor Clarifier
 17.3.13.1. Dregs and Overliming
 17.3.13.2. Loading
 17.3.13.3. Fresh Lime and Soft Burnt Lime
17.3.14. Mud Washing
17.3.15. Troubleshooting the Mud Washer
 17.3.15.1. Entrained Air
 17.3.15.2. Wet Scrubber Fines
17.3.16. Troubleshooting Underflow Lines
 17.3.16.1. Plugged Line
 17.3.16.2. Thin Underflow

17.4. FILTRATION

17.4.1. Vacuum Filtration
 17.4.1.1. Vacuum Drum Filters
 17.4.1.2. The Drum
 17.4.1.3. Drum Internal Piping
 17.4.1.4. Discharge Valve or Outlet
 17.4.1.5. Filter Media
 17.4.1.6. The Bailer Pipe
 17.4.1.7. The Vat
 17.4.1.8. The Agitator
17.4.1.9. Scraper Discharge
17.4.1.10. The Hood
17.4.1.11. Cake Wash
17.4.1.12. Acid Washing
17.4.1.13. The Sluice Pipe
17.4.1.14. Precoat Renewal Systems
17.4.1.15. Lime Mud Precoat Filter Operation and Troubleshooting
17.4.1.16. Dregs Precoat Filter Operation and Troubleshooting

17.4.2. Vacuum Disc Filters for Lime Mud
17.4.2.1. Center Shaft and Sectors
17.4.2.2. Filter Media
17.4.2.3. Discharge
17.4.2.4. Vat Level and Agitation
17.4.2.5. Cake Wash
17.4.2.6. The Hood
17.4.2.7. Precoat Renewal Systems
17.4.2.8. Vacuum Disc Filter Operation and Troubleshooting

17.4.3. Vacuum Pump Sizing and Operation

17.4.4. Vacuum Receivers
17.4.4.1. Separation
17.4.4.2. Filtrate

17.4.5. Pressure Tube Filtration
17.4.5.1. Pressure Tube Filters for White Liquor and Mud Washing
17.4.5.2. The Pressure Vessel
17.4.5.3. Operation
17.4.5.4. Acid Cleaning
17.4.5.5. Troubleshooting Tube Filters

17.4.6. Pressure Cassette Filters

17.4.7. Pressure Disc Filters
17.4.7.1. Center Shaft and Discs
17.4.7.2. Filter Media
17.4.7.3. The Separator
17.4.7.4. The Pressure Shell
17.4.7.5. Agitation
17.4.7.6. Scraper discharge
17.4.7.7. Cake Wash
17.4.7.8. Vat Level and Differential Pressure
17.4.7.9. The Compressor
17.4.7.10. Changing the Precoat
17.4.7.11. White-Liquor Pressure Disc Filter Operation
and Troubleshooting
17.4.7.12. Green-Liquor Pressure Disc Filter Operation
and Troubleshooting
17.4.7.13. Acid Cleaning
17.4.8. Cross-Flow Filters
17.4.9. Plate and Frame Filters

17.5. THE CENTRIFUGE
17.6. GENERAL SYSTEM SIZING

18. CAUSTIC PLANT PROCESS CONTROL
Peter W. Hart
18.1. SENSORS
18.1.1. Green-Liquor Density Control Sensors
 18.1.1.1. Baume Stick
 18.1.1.2. Bubble Tube
 18.1.1.3. Nuclear Density Meters
 18.1.1.4. Refractive Index
 18.1.1.5. Density Meter Assumptions
18.1.2. Conductivity Meters
18.1.3. Online Titrators
18.1.4. Fourier Transform Near-Infrared Liquor Analyzers

18.2. GOALS OF ADVANCED CONTROL IN A CAUSTIC PLANT
18.3. GREEN LIQUOR TOTAL TITRATABLE ALKALI
 18.3.1. Raw Green Liquor from Dissolving Tank
 18.3.2. Green-Liquor Trim Control

18.4. SLAKER CONTROL
 18.4.1. Delta Temperature Slaker Control
 18.4.2. Constant Slaker Temperature Control
 18.4.3. Conductivity Control
 18.4.4. Advanced Slaker Control Using Measured Compositions

18.5. SUMMARY
18.6. ACKNOWLEDGEMENT
18.7. LITERATURE CITED