Heat Sealing Technology and Engineering for Packaging: Principles and Applications

TABLE OF CONTENTS

Chapter 1: History and Functions of Heat Sealing Technology
- Features of heat sealing: Basis of adhesion; Process of heat sealing; Definition of heating temperature, peel seal, and tear seal; Requirement for the easy peel
- Problems of overheating
- Strategies for more efficient heat sealing

Chapter 2: Chemistry of Heat Sealing
- Utilization of the thermoplasticity of different polymer materials: Adhesive bonding force; Adhesive surface model

Chapter 3: Basics of Heating for Heat Sealing
- Reactions of the melting surface temperature of heat sealing
- Approaches to rational heat sealing: Problems of conventional heat sealing
- Features and selected applications of main heating methods: Heat Jaws heating; Impulse heating; Hot air blast heating; Ultrasonic heating; Induction current heating; Electric field loss heating; Hot wire heating
- Problems of conventional evaluation methods for heat sealing: Difference of JIS and ASTM methods; Advantages and disadvantages of JIS and ASTM methods

Chapter 4: Basics of Heat Sealing Operations
- Melting surface temperature as basis of heat sealing management/control
- The Measuring Method for Temperature of Melting Surface ("MTMS"): High-speed response of melting surface temperature measurement system; Examination method of "Optimal Heating Range"
- Measurement of melting characteristic of individual materials and deciding the lower-limit temperature

Chapter 5: Factors Contributing to Heat Sealing Failure
- Appropriateness of heating
- Elements affecting melting surface temperature: Factors of failure in heating time; "The poly ball"; Shrinking; Thermal denaturation of packaging materials
- Thermal stress causing packaging failure
- Causes of tack

Chapter 6: Rationality of Conventional Heat Sealing Methods
- Relation between press pressure and melting surface temperature
- Measurement of melting surface temperature for heat sealing with volatile components
- Effect of Teflon sheet in heating element on heat sealing operations
- Problems with the single-side heating process
- Changed in heat seal strength caused by roughness of bonding surface

Chapter 7: Methods for Determining Peel Seal and Tear Sealing

Chapter 8: Methods for Confirmation and Improvement of Heat Sealing Functions
- Using peel energy from peel seal
- Thickness and heat seal strength of heat sealant
- Synergism of lamination strength and heat seal strength
- Satisfying HACCP requirement using heat sealing
- Inspection and utilization of easy peel
- Causes of and countermeasures against foaming in the melting layer

Chapter 9: Functional Improvements of the Heat Sealing Process
- Causes and prevention of pinhole and edge cutting
- Using the peel seal region
- Accurate adjustment technique of surface temperature on heating block
- Simulation of arbitrary melting surface temperatures: Simulation method for materials revealing linear

Chapter 10: Case Studies Analyzing and Preventing Heat Sealing Failure
- Proper heat sealing conditions for medical sterilized packaging materials (unwoven fabrics)
- Lid seal failure in paper cups
- Precise measurements for heat sealing biodegradable plastic

Chapter 11: Test Method of Heat Sealing using Melting Surface Temperature as a Parameter