Contents

Preface, xv
Acknowledgments, xvi
Authors, xix

CHAPTER 1 ■ Big Picture and Principles of the Small World

1.1 UNDERSTANDING THE ATOM: EX NIHILO NIHIL FIT 3
1.2 NANOTECHNOLOGY STARTS WITH A DARE: FEYNMAN’S BIG LITTLE CHALLENGES 10
1.3 WHY ONE-BILLIONTH OF A METER IS A BIG DEAL 14
1.4 THINKING IT THROUGH: THE BROAD IMPLICATIONS OF NANOTECHNOLOGY 16
 1.4.1 Gray Goo 18
 1.4.2 Environmental Impact 19
 1.4.3 The Written Word 20
1.5 THE BUSINESS OF NANOTECH: PLENTY OF ROOM AT THE BOTTOM LINE TOO 22
 1.5.1 Products 24
Homework Exercises 24
Short Answers 25
References 26
Recommendations for Further Reading 27

CHAPTER 2 ■ Introduction to Miniaturization

2.1 BACKGROUND: THE SMALLER, THE BETTER 29
2.2 SCALING LAWS 30
 2.2.1 The Elephant and the Flea 30
 2.2.2 Scaling in Mechanics 34
8.2.2 Photon Emission
8.2.3 Photon Scattering
8.2.4 Metals
 8.2.4.1 Permittivity and the Free Electron Plasma
 8.2.4.2 The Extinction Coefficient of Metal Particles
 8.2.4.3 Colors and Uses of Gold and Silver Particles
8.2.5 Semiconductors
 8.2.5.1 Tuning the Band Gap of Nanoscale Semiconductors
 8.2.5.2 The Colors and Uses of Quantum Dots
 8.2.5.3 Lasers Based on Quantum Confmement
8.3 NEAR-FIELD LIGHT
 8.3.1 The Limits of Light: Conventional Optics
 8.3.2 Near-Field Optical Microscopes
8.4 OPTICAL TWEEZERS
8.5 PHOTONIC CRYSTALS: A BAND GAP FOR PHOTONS
8.6 SUMMARY
HOMEWORK EXERCISES
RECOMMENDATIONS FOR FURTHER READING

Chapter 9: Nanoscale Fluid Mechanics

9.1 BACKGROUND: BECOMING FLUENT IN FLUIDS
 9.1.1 Treating a Fluid the Way It Should Be Treated:
 The Concept of a Continuum
 9.1.1.1 Fluid Motion, Continuum Style:
 The Navier–Stokes Equations
 9.1.1.2 Fluid Motion: Molecular Dynamics Style
9.2 FLUIDS AT THE NANOSCALE: MAJOR CONCEPTS
 9.2.1 Swimming in Molasses: Life at Low Reynolds Numbers
 Reynolds Number
 9.2.2 Surface Charges and the Electrical Double Layer
 Surface Charges at Interfaces
 Gouy–Chapman–Stern Model and Electrical Double Layer
 9.2.2.3 Electrokinetie Phenomena
 9.2.3 Small Particles in Small Flows: Molecular Diffusion
9.3 HOW FLUIDS FLOW AT THE NANOSCALE

9.3.1 Pressure-Driven Flow
9.3.2 Gravity-Driven Flow
9.3.3 Electroosmosis
9.3.4 Superposition of Flows
9.3.5 Ions and Macromolecules Moving through a Channel
 9.3.5.1 Stokes Flow around a Particle
 9.3.5.2 The Convection–Diffusion–Electromigration Equation:
 Nanochannel Electrophoresis
 9.3.5.3 Macromolecules in a Nanofluidic Channel
9.4 APPLICATIONS OF NANOFUIDIC
 9.4.1 Analysis of Biomolecules: An End to Painful Doctor Visits?
 9.4.2 EO Pumps: Cooling Off Computer Chips
 9.4.3 Other Applications
9.5 SUMMARY
HOMEWORK EXERCISES
RECOMMENDATIONS FOR FURTHER READING

Chapter 10: Nanobiotechnology

10.1 BACKGROUND: OUR WORLD IN A CELL
10.2 INTRODUCTION: HOW BIOLOGY "FEELS" AT THE NANOMETER SCALE
 10.2.1 Biological Shapes at the Nanoscale: Carbon and Water Are the
 Essential Tools
 10.2.2 Inertia and Gravity Are Insignificant: The Swimming Bacterium
 10.2.3 Random Thermal Motion
10.3 THE MACHINERY OF THE CELL
 10.3.1 Sugars Are Used for Energy (but also Structure)
 10.3.1.1 Glucose
 10.3.2 Fatty Acids Are Used for Structure (but also Energy)
 10.3.2.1 Phospholipids
 10.3.3 Nucleotides Are Used to Store Information and Carry Chemical Energy
 10.3.3.1 Deoxyribonucleic Acid
 10.3.3.2 Adenosine Triphosphate
 10.3.4 Amino Acids Are Used to Make Proteins
 10.3.4.1 ATP Synthase
Preface

We did not want this to be a book that glosses over the nitty-gritty stuff, assuming you already know everything, nor a book that uses “hand-waving” to magically skirt around real explanations of the complex stuff. The tone of the book is intended to make it more readable—which is to say that it is not too “textbook-y.” Having used hundreds of textbooks ourselves, we knew how we did not want this one to be, and that was stodgy.

This book is about nanotechnology, a gigantic topic about small things. It is a book that is intended to excite, inspire, and challenge you. We want to uncover the most important things about nanotechnology and give you the tools you need to dig deeper on your own. We want you to enjoy learning (maybe even laugh) and for you to find out a lot in a short time. There will be plenty of rigorous scientific support, but concepts will be conveyed in clear, simple language that you can digest and apply immediately. We do “back-of-the-envelope” calculations together throughout the process so that you get a good feeling for the numbers of nanotechnology. Creative problem sets (Homework Exercises) follow each chapter to test your understanding of new concepts.

Nanotechnology represents a convergence of many sciences and technologies at the nanometer scale. In fact, it is becoming its own discipline altogether. It requires the ability to apply various scientific principles to system-level design and analysis. The multidisciplinary nature of nanotechnology—which draws from physics, chemistry, biology, and engineering—has the inherent challenge of teaching students with backgrounds in different knowledge domains.

And because the synthesis of disciplines is at the core of nanotechnology, we focus on systems in this book. A system is a set of interacting, interrelated, or interdependent elements that are put together to form a complex whole. We discuss nanotechnology on a system-by-system basis to foster both an appreciation and an understanding of this multifaceted topic.

We start with an overview treatment of nanotechnology, with special emphasis on the history, key personalities, and early milestones. Then on to the issues, promises, and fundamentals of nanotechnology. In fact, Chapter 1, “Big Picture and Principles of the Small World,” stands alone as a comprehensive introduction, intended to answer your first question as to what nanotechnology really is and could be. This chapter is self-contained and comprehensive; there is enough information for a freshman or general public course. It includes a discussion of the effects this new industry could have on human life, careers, education, and the environment.