Boiler Water Treatment Principles and Practice: Charts and Notes for Field Use

TABLE OF CONTENTS

About the Author

Saturated steam temperatures at various boiler pressures

Boiler Energy and Power Units

Typical gross heating values of common fuels (based on approximately 80% fuel to steam efficiency)

Typical energy consumption and output ratings for a fire tube boiler

Steam tables suitable for pressure deaerators

Calculating Blowdown

Coefficients of thermal conductivity for some heat-exchanger metals and boiler deposits

Types of water or steam commonly employed in most HW heating and steam generating plants

Commonly occurring minerals in natural MU water sources

Specific waterside / steamside problems affecting MPHW and HPHW boiler plants

Salt concentration indicators

Summary of waterside / steamside problems affecting LPHW and LP steam heating boiler plants

FW contamination from MU water

FW contamination from returned condensate

Problems associated with the final FW blend

Deposition of boiler section waterside surfaces by alkaline earth metal salts, other inorganic salts and organics

Silica and silicate crystalline scales and deposits affecting boiler section waterside surfaces

Iron oxide and other boiler section corrosion debris deposits
Boiler section corrosion problems involving oxygen, concentration cells and low pH

Stress and high temperature related corrosion

Steam purity, quality and other operational problems

Specification for grades of high-quality water suitable for higher pressure WT boilers

Practical considerations for a RW ion-exchange softener

Types of Internal Treatment Program

Carbonate Cycle Requirement Calculations

Phosphate-Cycle Requirement Calculations

A Guide to Tannin Residuals in BW

Carbonate-Cycle Program. BW Carbonate Reserve Requirements by Pressure and Sulfate Concentration

Carbonate-Cycle Coagulation and Precipitation Program. Recommended BW Control Limits for Non-Highly-Rated FT Boilers Employing Hard or Partially Softened FW

Phosphate-Cycle Coagulation and Precipitation Program. Recommended BW Control Limits for Non-Highly-Rated FT Boilers Employing Hard, Partially Softened, or Fully Softened FW

Phosphate-Cycle Coagulation and Precipitation Program. Recommended BW Control Limits for Non-Highly-Rated WT Boilers Employing Hard, Partially Softened, or Fully Softened FW

Chelant demand (ppm product) per 1ppm substrate

EDTA Chelant or All-Polymer/All-Organic Program. Recommended BW Control Limits for Fired WT Boilers Employing Demineralized or Similar Quality FW

Oxygen Solubility at Atmospheric Pressure

Properties of Oxygen Scavengers

Carbon Dioxide Evolution from FW Alkalinity

Amine Requirement to Reach a Stable Condensate pH

Amine Basicity Dissociation Constants
Neutralizing Amine Summary Notes

Some DR values for CO2, NH3 and neutralizing amines at various pressures

Calculating Alkalinity Feed-Rate Requirements

ASME Consensus table 1: Suggested water chemistry limits. Industrial watertube, high duty, primary fuel fired, drum type
Makeup water percentage: Up to 100% of feedwater.
Conditions: Includes superheater, turbine drives or process restriction on steam purity

ASME Consensus table 2: Suggested chemistry limits. Industrial watertube, high duty, primary fuel fired, drum type

ASME Consensus table 3: Suggested chemistry limits. Industrial firetube, high duty, primary fuel fired

ASME Consensus table 4: Suggested water chemistry limits. Industrial coil type, watertube, high duty, primary fuel fired rapid steam generators

ASME Consensus table 5: Suggested water chemistry limits. Marine propulsion, watertube, oil fired drum type

ASME Consensus table 6: Suggested water chemistry limits. Electrode, high voltage, forced circulation jet type

Reduction in heat transfer efficiency with increase in deposit thickness, where A = iron oxides and silica, B = iron oxides, C = calcium carbonate