Table of Contents

1. Overview
- What is a Web? • What is Web Handling? • The Benefits of Great Web Handling • Conventions
- Units • Web Line Basics • Key Web Handling Principles • Control of Conditions • Webs and Machines

2. Materials
- "It Depends on the Material" • Properties for Web Handling • Avoiding Web Damage
- Dimension-Related Properties • Web Imperfections • Obtaining Web Properties • Thickness
- Thickness Profile • Basis Weight • Density • Tensile Testing • Young's Modulus • Tensile Stiffness
- Poisson’s Ratio • Failure Stress • Flexural Modulus and Stiffness • Compressive Strength
- Viscoelastic Behavior • True Resistance • Coefficient of Friction (COF) • Lab Tests for Friction
- Adhesion • Surface Roughness • Surface Roughness Measurements in Films and Foils • Contact and Friction • Roughness of Paper • Air Permeance • Thermal Expansion • Moisture Effects
- Orientation and Anisotropy • Paper • Plastic Films • Metal Foils and Sheets • Woven Fabrics
- Nonwovens • Fiber Composites • Foams • Glass • Multilayer Webs • Typical Property Values
- Concluding Remarks • Bibliography

3. Rollers
- The Building Blocks of Our Web Machine • Web-Path Design • Roller Functions • Minimizing Roller Count • Optimizing Span Length • Web-Contact Restrictions • Tolerant Web Machine Designs • Roller Design • Roller Width • Roller Diameter • Roller Diameter Profile • Bearing Position • Bearing Life • Bearing Design • Roller Inertia • Roller Deflection • Roller Shell Materials
- Roller Heads and Shafts • Roller Coatings and Covers • Additional Roller Design Considerations • Cylindricity and Other Measures of Quality • Roller Mounting • Support and Alignment • Problems Caused by Roller Misalignment • Roller Alignment Standards • Frame and Mount Design for Alignment • Roller Frames and Supports • Foundations • Roller Mounts • Dual End vs Cantilevered Roller Support • Roller Alignment Methods • Simple Alignment Checking Tools • Roller Alternatives • Concluding Comment • Bibliography

4. Traction
- Introduction to Traction • Traction in Web Handling • Traction Safety Factor • Available Traction
- Web-To-Roller Coefficient of Friction • The Belt Equation • Use of Worn Roller • Air Lubrication and Traction Loss • Air Capacity of Roller Roughness and Grooving • Traction Transition from Friction to Full Lubrication • Web Centrifugal Force • Optimizing Traction • Minimum Wrap Angle
- Traction of Nipped Rollers • Traction of Vacuum-Assisted Rollers • Traction Required • Loss of Traction and Slippage • Macro- and Micro-Slip • Scratches, Abrasion, and Roller Marks • Adhesion and Release Surfaces • Non-Roller Traction Systems • Bibliography

5. Tension
- Introduction to Tensioning • Designing a Tension Control Plan • Specifying Tensions and Tension Variations • Specifying Tension Zones and Drive Points • Developing a Control Plan for a Multi-Zone Web Line • Tensioning with Open-Loop Torque Control • Tensioning with Closed-Loop Control • Summary of Tensioning Options • Minimizing Undesirable Tension Variations from All Sources • Bibliography

6. Drives
- Introduction to Drives • The Purpose of a Drive • Review of Web Basics • Types of Motors • Speed, Torque, and Power • Motor Efficiencies • Types of Adjustable Speed Drive (ASD) • 4-Quadrant Operation • Mechanical Drives and Components • Speed Reducers • Couplings • Bearings • Universal Joints • Resonances • Sensors • Adjustable Frequency Drive Coordination and Communication • Working with ASDs • Tools • ASD Parameters • Block Diagrams • ASD Tuning • ASD Modes • Surface Speed Control • S-Ramp • Diameter • Tension Control • Open-Loop Control • Closed-Loop Control • Dancers • Torque Compensation due to Inertia • Friction and Windage • Load Sharing • Speed Drops • Web-Roller Slippage Detection • Eccentric Rolls
- Sizing an ASD and Motor • Threading the Line • Roller Changes • ASDs for Specific Converting Sections • Safety Standards • Maintenance • Process Changes—Upgrading Older ASDs • Concluding Comments • Bibliography

7. Nipped Rollers
- Introduction to Nipped Rollers • Nipped Roller Functions • Nip Forces and Pressures
- Controlling and Estimating Nip Force from Supply Pressure • Controlling and Estimating Force from Indentation or MD Footprint • Rubber-Covering Mechanics • Specifying Rubber Hardness • Rubber Hardness and Elastic Modulus • Nip Measurements and CD Profile • Causes of Nip Profile Variations • Nip-Induced Tensioning and Shifting • The Ideal Nipping System • Safety • Summary Advice • Bibliography

8. Guides and CD Path Control
- Cross-Machine Position Needs • CD Position Error Overview • Large-Scale CD Errors
- Small-Scale (But Potentially Critical) CD Errors • The Normal Entry Rule • The Span as a Tensioned Beam • CD Tension Variations and Slackness • CD Error Propagation • CD Shifting Mechanism • Misalignment • Shifting from CD Tension Gradient or Profile • CD Diameter Variations • Nipping Variations • Web Bagginess • Web Thickness Profile • Web Peeling Variations • Air Flow Variations • Spiral Patterns and CD Shifting • Real or Myth? • Summary of CD Shifting Effects • Summary of Considerations to Reduce CD Errors • Web Guiding (Edge/Center) • Path Position Control • Passive Guides • Active Guides • System Architecture and Options • Guide Response and Accuracy • Unwind and Winder Sideways Guides • Steering Guides • Displacement Guides • Other Guides • Parallel Between Guiding and Spreading
- Intentional Path Changes • Turn Bars • To Close with a Few Turn Bar Application Notes • Bibliography

9. Wrinkles and Flatness
- Introduction • How to Read and Describe: Troughs, Wrinkles and Creases • Inspecting Samples • Wrinkle Types and Subtypes • Quantifying Wrinkle Severity as a Count • Quantifying Wrinkle Severity as Excess Width • Width Permanence • Mechanics of Troughs and Wrinkles • Causes of MD Wrinkles and Troughs • Diagonal Buckling • Prediction of Diagonal Wrinkles Due to Misalignment • MD Buckling and CD Wrinkles • Wrinkles Caused by Web Properties • Wrinkle Summary Thoughts • Bibliography

10. Spreader
- Why Spread? • Spreader Options • Spreader Mechanics • A Strategy for Wrinkles • Flattening
- Compliant Cover Rollers • Concave Roller • Bowed Roller • A Simple Lane Model for After-Slip Spreader • The Best Pipe Options • Dual Spreaders • Expanding Cover Rollers • Edge Pull Spreaders • Tenter Frames • Spiral Grooving • The Textile Spreader Bar and Chevron Fool Spread • Spreader Application Summary • Bibliography

11. Winders
- What Does a “Good” Wound Roll Look Like? • Core and Near-Core Troubles • Winder Classes • Winder Arrangements • TMTs & Tightness • Range of Tightness Provided by the Various Classes of Winders • Roll Structure and Taper • Roll “Quality” Measurements • Using Roll Hardness to Screen for Bagginess • Pressures and Other Stresses Inside a Wound Roll • Generation of Winding Stresses • Radial Modulus is a Key Winding Model Input
- Air Entrainment • Winding Stress Models • Wound Roll Stress Applications
- Some Winding Deficits • Predicting Roll Diameter from Length and Other Measurements • Bibliography

12. More Web Handling and Processing
- How to Use • Accumulators • Air Floatation • Air Float Ovens • Arched Ovens • Brakes, Pneumatic, Calendering • Cleaning • Coating • Corona Treatment • Curl—Overview • Curl—Laminator • Curl—Roll Set • Environmental Conditions • Film (Web) Flutter
- Folding • Friction (Nips, Dancers, Controls, etc.) • Gusset • Heated and Cooled Rollers • Liquids, Web Handling in Metals • Moisture and Relative Humidity • Oscillation • Paper
- Printing • Registration • Roller Alternatives • Scratches • Skew • Skewable, Skewing or Squaring Rollers • Slack Web • Slitting • Speed • Spring-Mounted and ‘Self-Leveling’ Rollers • Static Charge • Static Reduction • Sticking to Rollers • Textiles • Thin Materials • Web Handling in a Vacuum • Vibration (Bottle) Web Breaks • Width of Web and Wound Roll • Bibliography

13. Appendices
- Appendix A—Appendixes (Abbott/Apps and other Internet Resources)
- Appendix B—Selected Resources
- Appendix C—Conversion Factors
- Appendix D—Other Web Handling Resources
- Appendix E—Web Handling Timeline
- Appendix G—Symbols and Abbreviations
- Appendix M—Drive Motor Sizing for Center Winders
- Appendix Q—Self-Test Questions
- Appendix S—Best Practices for Taking A Web Sample
- Appendix T—Test Methods • Appendix W—Web Handling Websites

Glossary • Index • Biographies of the Authors and Chapter Champions