Chapter 1 - Introduction: Making your Paper Special
Martin A. Hubbe and Scott Rosencrance

1.1. CHALLENGES THAT WE FACE

1.2. CLASSES OF ADDITIVES AFFECTING PAPER ATTRIBUTES

1.3. TRENDS AND PROSPECTS

1.4. OVERVIEW OF THIS VOLUME

Chapter 2 - Colorants: A Way to Set Your Paper Products Apart
Barbara Lukasik and William Dempsey

2.1. INTRODUCTION

2.1.1. The History of Colorants

2.1.2. The Language of Color

2.1.3. Color Systems Based on Visual Observations

2.1.4. Color Systems Based on Instrumental Readings

2.1.5. Combinations of Colorants

2.1.6. Color Matching

2.2. COLORANT CHEMISTRY AND CHARACTERISTICS

2.2.1. General Properties of Dyestuffs

2.2.2. Direct Dyes

2.2.3. Cationic Direct Dyes

2.2.4. Basic Dyes

2.2.5. Acid Dyes

2.2.6. Pigments

2.3. METHODS OF COLORANT APPLICATION

2.3.1. Types of Coloring

2.3.2. Colorant Inventory

2.3.3. Cost Limitations
2.3.4. Dye Storage
2.3.5. Dye Metering
2.3.6. Dye and Fixative Addition
2.3.7. Dye Addition Points and Order of Addition

2.4. ATTRIBUTES OF PAPER’S COLORATION

2.4.1. Light Fastness
2.4.2. Bleed Fastness
2.4.3. Metamerism
2.4.4. Two-sidedness
2.4.5. Bleachability
2.4.6. Food Contact and Packaging Requirements

2.4. EFFECTS OF PROCESS CONDITIONS

2.5.1. Papermaking pH
2.5.2. Water Quality
2.5.3. Pulps (Furnish)
2.5.4. Contact Time and Points of Addition
2.5.5. Degree of Refining
2.5.6. Water Hardness
2.5.7. Broke Addition
2.5.8. Temperature
2.5.9. Moisture
2.5.10. Fillers
2.5.11. Paper Machine Conditions
2.5.12. Auxiliary Chemicals

2.5.12.1 Fixatives
2.5. FLUORESCENT WHITENING AGENT

2.5.1. Mechanism of Whitening

2.5.2. Chemistry of FWA

2.5.2.1. Cis- Trans- Isomerism of FWA

2.5.2.2. Degree of Sulfonation of FWA

2.5.3. Internal Addition of FWA

2.5.3.1. Greening Limit

2.5.3.2. Additives and FWA Performance

2.5.3.3. Pulp Brightness and FWA

2.5.4. Size Press Addition of FWA

2.5.5. Coating Application of FWA

2.5.6. Measurement of Optically Brightened Papers

2.6. Conclusion

Literature Cited

Chapter 3 - Fluid Resistance: The Sizing of Paper
Susan Ehrhardt and John Leckey

3.1. INTRODUCTION

3.2 PROMINENT SIZING AGENTS

3.2.1. Rosin – The Original Internal Sizing Agent

3.2.2. Alkyl Ketene Dimer (AKD)

3.2.3 - Alkenyl Succinic Anhydride

3.2.4. Surface Sizing Additives

3.2.5. Oil and Grease Resistance (OGR)
3.2.5.1. Fluorochemicals
3.2.5.2. Wax

3.3. SIZING STRATEGIES FOR GRADES OF PAPER

3.3.1. Fine Paper
 3.3.1.1. Internal sizing agents
 3.3.1.2. Sizing tests for fine paper

3.3.2. Newsprint

3.3.3. Liquid Packaging Grades
 3.3.3.1. Gable-top
 3.3.3.2. Aseptic
 3.3.3.3. Cupstock
 3.3.3.4. Freezer Board
 3.3.3.5. Sizing Tests.

3.3.4. Other Packaging Grades
 3.3.4.1. Linerboard
 3.3.4.2. Tubestock
 3.3.4.3. Gypsum Board
 3.3.4.4. Carrier Board
 3.3.4.5. Bag Grades
 3.3.4.6. Oil and Grease Resistant Grades (OGR)

3.4 Concluding Remarks

Literature Cited

Chapter 4 - Absorbency: Even more Friendly toward Aqueous Liquids
Franklin Zambrano, Tiago de Assis, Jacob Zwilling, Richard A. Venditti, and Ronalds W. Gonzalez
4.1. INTRODUCTION: ABSORBENCY, THE KEY FEATURE IN TISSUE PRODUCTS

4.2. FACTORS AFFECTING ABSORBENCY OF TISSUE PRODUCTS

4.2.1. Mechanisms Driving the Absorption of Fluids

4.2.2. Location of the Water in an Absorbent Tissue Sheet

4.2.3. Structural and Chemical Properties of Absorbent Products

4.2.3.1 Relationship between bulk and absorbency

4.2.3.2 Relationship between air permeability and absorbency

4.2.3.3 Effect of contact angle on capillarity and absorbency rate

4.2.3. Trade-off between Properties

4.3 WAYS TO ACHIEVE BULKY, POROUS PAPER

4.3.1 Effect of Fiber Selection

4.3.2 Dimensional Stability of Absorbent Fiber Networks

4.3.3 Effect of Machine Technology

4.3.4 Effect of Wet-end and Creping Chemistry

4.4. EVALUATING THE ABSORBENT PERFORMANCE OF TISSUE PRODUCTS

4.4.1. Instrumentation

4.4.2. Measurement of the Absorption Rate

4.4.3. Measurement of the Absorption Capacity

4.4.4. In-use Absorbency vs. Intrinsic Absorbency

4.5 END-OF-LIFE OF TISSUE PRODUCTS

4.5.1 Bath Tissue Waste Management

4.5.2 Household Paper Waste Management

4.5.3 Biodegradation, Landfilling, and Incineration

4.5.4 Closing Remarks

Literature Cited
Chapter 5 - Tactile, Frictional, and Softness Attributes of Paper: Letting your Customer Feel Your Product
D. Steven Keller

5.1. INTRODUCTION

5.2. OVERVIEW OF HUMAN TOUCH

5.2.1. Physiological Aspects of Touch

5.2.2. What is Softness?

5.3. HYGIENIC PAPERS: SOFTNESS IS THE KEY

5.3.1 Debonders

5.3.2 Lotion (Softening Additives)

5.3.3 Creping Effects Associated with Chemical Additives

5.3.4 Embossing

5.4 PRINTING and Packaging papers: Frictional Effects

5.4.1 Surface Softness

5.4.1.1. Surface Friction and Human Touch

5.4.1.2. Surface Smoothness

5.4.2 Embossing and Watermarking

Literature Cited

Chapter 6 - Security Papers: Trust but Verify
Martin A. Hubbe

6.1. INTRODUCTION: PURPOSES OF SECURITY PAPER PRODUCTS

6.2. WHY PAPER AS A MEDIUM FOR SECURE DOCUMENTS

6.2.1. Inherent Features of Paper
6.2.2. Recognizability

6.2.3. Relatively Low Cost

6.2.4. Forensic Opportunities for Verification

6.3. CHALLENGES FACING SECURITY PAPER PRODUCTS

6.3.1. Modern Counterfeiting

6.3.2. Durability

6.3.3. Ideal Attributes of Counterfeit Prevention Features

6.4. DEFENSES AGAINST COUNTERFEITING

6.4.1. Vigilant Cashiers

6.4.2. Machine Readers

6.4.3. Forensic Analysis

6.4.4. Emerging Defenses Against Counterfeiting

6.5. BASE-STOCK PRODUCTION FOR SECURITY PAPERS

6.5.1. Fiber Selection

6.5.2. Avoidance of Certain Components

6.5.3. Papermaking Additives

6.5.4. Methods of Incorporating Features

6.5.5. Erasure Resistance

6.6. PAPER-BASED SECURITY FEATURES

6.6.1. General

6.6.2. Inclusions Added During Papermaking

 6.6.2.1. Threads

 6.6.2.2. Fluorescent items

 6.6.2.3. Other inclusions
6.6.3. Modifications of the Paper

6.6.3.1. Watermarks

6.6.3.2. Perforations

6.6.3.3. Embossing

6.7. SECURITY FEATURES INVOLVING PRINTING

6.7.1. Printing Methods

6.7.2. Graphics Quality

6.7.3. Color of Printing

6.7.3.1. Multicolor print

6.7.3.2. Color-shifting inks

6.7.4. Fluorescence

6.7.5. Infrared Ink

6.7.6. Metamerism

6.7.7. Chromic Effects

6.7.8. Magnetic Inks

6.7.9. Printing Between Paper Plies

6.8. STRIPS AND SPECIALIZED INCLUSIONS

6.8.1. Plastic Strip

6.8.2 Other Inclusions

6.9. CLOSING COMMENTS

Literature Cited

Chapter 7 - Dry Strength: Strategies for Stronger Paper

Chen Lu, Scott Rosencrance, Darren Swales, Rosy Covarrubias, and Martin A. Hubbe

7.1. INTRODUCTION

7.2. CHALLENGING CIRCUMSTANCES FOR PAPER STRENGTH

7.3. HOW PAPER FAILS AND HOW TO TEST IT
7.3.1 Paper Testing Principles

7.3.1.1 In-plane tensile strength

7.3.1.2 Bending Stiffness

7.3.1.3 Edgewise compressive strength

7.3.1.4 Out-of-Plane Strength

7.4 CONVENTIONAL STRATEGIES TO INCREASE PAPER STRENGTH

7.4.1 Fiber Selection

7.4.2 Pulping

7.4.3 Refining

7.4.4 Forming, Pressing, and Sheet Handling

7.4.5 Dry-strength Additives and their Strategic Use

7.4.5.1 General considerations

7.4.5.2 Glyoxalated Polyacrylamide

7.4.5.3 Polyamidoamine Epichlorohydrin (PAE)

7.4.5.4 Starch Products

7.4.5.5 Polyvinylamine

7.4.5.6 Anionic Polyacrylamide and Polyelectrolyte Complex

7.4.5.7 Amphoteric Polyacrylamide

7.4.5.8 Carboxymethyl c-Cellulose

7.5 NON-CONVENTIONAL STRATEGIES TO INCREASE PAPER STRENGTH

7.5.1 Enzymes

7.5.2 Nanocellulose and Paper Strength

7.5.3 Filler Agglomeration and Related Strategies

Literature Cited
Chapter 8 - Bulky, Formable, or Foldable Paper: Air is the Lowest Cost Component and a Way to Reduce Basis Weight
Elias A. Retulainen

8.1. INTRODUCTION: BULK IN PAPER

8.2. PAPER GRADES AND PROPERTIES BENEFITTING FROM BULKINESS

8.3. BULK CAN HELP IN BASIS WEIGHT REDUCTION

8.4. EFFECTS OF INCREASING BULK

8.5. WAYS TO INCREASE BULK AND STRENGTH

8.5.1. Factors Affecting the Bulk of Paper

8.5.2. Basic Structural Components Contributing to Strength and Elongation of Paper

8.5.3. Refining

8.5.4. Fines and Cellulose Fibrils

8.5.5. Strength Chemicals

8.5.6. Combining Strength Chemicals and Cellulose Fibrils

8.6. FORMABLE PAPER; CREATING OUT-OF-PLANE SHAPES

8.6.1. Increasing Attractiveness or Functionality

8.6.2. Bending, Folding, and Creasing

8.6.3. Embossing

8.6.4. Three-dimensional Forming

8.6.4.1. Basic principles

8.6.4.2 Formability in Sliding Blank Process

8.6.4.3. Extensibility and Formability in Fixed Blank Process

8.6.4.4. Industrial Applications

8.7. CONCLUDING REMARKS

Literature Cited
Chapter 9 - Printing Paper: Smooth, Possibly Glossy, and Superior Printing
Lokendra Pal, Preeti Tyagi, and Paul D. Fleming

9.1 INTRODUCTION

9.2. BASICS OF PRINTING PROCESSES AND THEIR DEMANDS ON PAPER

9.2.2. Flexographic Printing

9.2.3. Lithography/ Offset Printing

9.2.4. Screen Printing

9.2.5. Electrophotography

9.2.6. Inkjet

9.3 INKS AND THEIR INTERACTIONS

9.3.1 Basics of Inks

9.3.1.1 Pigments or Colorants

9.3.1.2 Varnishes

9.3.1.3 Other ink components

9.3.2 Ink Drying

9.3.3 Nonimpact Inks and Toners

9.4 BASICS OF PRINT QUALITY

9.4.1 Print Density

9.4.2 Print Strike-through or Show-through

9.4.3 Print Mottle

9.4.4 Print Gloss

9.4.5 Image Fidelity
9.4.6 Halo and Striation
9.4.7 Ink Trapping
9.4.8 Dot Gain
9.4.9 Print Uniformity
9.4.10 Print Contrast
9.4.11 Rub Resistance
9.4.12 Linting
9.4.13 Picking
9.4.14 Dimensional Problems
9.4.15 pH of Fountain Solution
9.4.16 Hot and Cold Weather Complaints

9.5. PHYSICAL AND OPTICAL PROPERTIES OF PAPER AFFECTING PRINT QUALITIES

9.5.1. Smoothness/Roughness
9.5.2. Paper Gloss
9.5.3. Porosity
9.5.4. Bulk
9.5.5. Brightness and Shade
9.5.6. Opacity
9.5.7. Moisture Content
9.5.8. Oil Absorbency
9.5.9. pH Effect
9.6. ADVANCEMENTS IN PAPER CHEMISTRY AND SURFACE FOR PRINTING

9.6.1. Pulp Fiber Type

9.6.2. Paper Fillers and Additives

9.6.3. Surface Sizing

9.6.4. Coatings

 9.6.4.1 Offset

 9.6.4.2 Inkjet

9.6.5. Calendering

9.6.6. Cast Coating

9.7. SUMMARY