Aqueous Dispersions of Polyolefins
Breaking the Extrusion Barrier

Ronald Wevers
Session 6.2, Paper 7633
What comes to mind when you think of polyolefins?

- Films
- Plastic Pellets
- Molded Articles & Containers
Traditional Polyolefin Converting Processes

Blown / Cast Film

Injection, Compression, Blow - Molding

Extrusion Coating / Lamination

Profile & Sheet Foam Extrusion
Waterborne Polyolefin Dispersions
40-55 % Solids, < 500 cps Viscosity
Converting Options for Polyolefin Dispersions

Printing/Coating Processes (Rotogravure)

- Spray Application
- Dipping
- Frothed Foams
Waterborne Application Vs Extrusion for Coating of Polyolefins

- Thinner coatings
- Use existing waterborne application equipment
- Higher line speeds
- Penetrate porous / fibrous webs
- Coat at low temperature
- Coat complex geometry
- Coat in pattern
Polyolefin Dispersion Characteristics

- Avg. Particle Size ~ 1 µ
- Solids Content (by wt) 40 to 55% solids
- pH – 8.0-10.5
- Viscosity (Brookfield @ 25°C) < 500 cps
Example Polyolefin Dispersions

<table>
<thead>
<tr>
<th>Product Designation</th>
<th>Polymer Composition</th>
<th>Carboxylic Acid Content</th>
<th>Polymer Melting Point (deg C)</th>
<th>Polymer Tg (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispersion A</td>
<td>Ethylene Copolymer</td>
<td>Yes</td>
<td>60</td>
<td>-55</td>
</tr>
<tr>
<td>Dispersion B</td>
<td>Ethylene Copolymer</td>
<td>Yes</td>
<td>116</td>
<td>-55</td>
</tr>
<tr>
<td>Dispersion C</td>
<td>Propylene Copolymer</td>
<td>Yes</td>
<td>85</td>
<td>-25</td>
</tr>
<tr>
<td>Dispersion D</td>
<td>Ethylene Copolymer</td>
<td>No</td>
<td>60</td>
<td>-55</td>
</tr>
<tr>
<td>Dispersion E</td>
<td>Propylene Copolymer</td>
<td>No</td>
<td>85</td>
<td>-25</td>
</tr>
</tbody>
</table>
Film Formation – Hot Stage Microscopy

Polyolefin Particles

Homogeneous Film
Mechanical Properties of 250 µ Films Cast from Dispersion D

Paper 7633, Ronald Wevers
Properties of Polyolefin Dispersions

- Water resistance
- Oil & grease resistance
- Heat sealability
- Elasticity / flexibility

- Adhesion to polyolefins
- Adhesion to polar substrates
Carpet Backing

Benefits

- Interlayer adhesion with Polypropylene Tuft & Fabrics
- Thermoformability (Automotive)
- Moisture resistance
- Ability to recycle
- Application via conventional latex coating processes
Frothed Polyolefin Foam Coatings

- Foam directly onto various substrates
- Open cell structure
- High elasticity & soft, luxuriant feel
- Biocompatibility
- High filler acceptance
- Embossable
PO Dispersions as Paper Coatings

- Polyolefins have been widely used to modify paper
- Limitations exist for extruded polyolefins
 - Thickness (> 10 microns)
 - Adhesion to paper
- Beneficial properties provided to paper and board
 - Oil and grease barrier
 - Moisture resistance
 - COF modification
 - Adhesion promoter / tie layer
 - Heat sealability
PODs in Flexible Packaging

Tie Layer / Laminating Adhesive
- Alternative to extrusion lamination
 - Adhesion to polyolefins
 - Adhesion to polar substrates (paper, glass, foil, polar polymers)

Heat Sealable Layer
- Apply at low temperatures and high speeds
- Low HSIT (<70°C)
- Use existing printing equipment
Grease Resistance (OGR) - 24hrs in 60 deg C Oven

<table>
<thead>
<tr>
<th></th>
<th>Corn</th>
<th>Sesame</th>
<th>Vegetable</th>
<th>Olive</th>
<th>Peanut</th>
<th>Canola</th>
<th>Oleic Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyolefin Dispersion A</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>HS</td>
</tr>
<tr>
<td>Styrene/Butyl Acrylate Latex</td>
<td>HS</td>
<td>HS</td>
<td>HS</td>
<td>HS</td>
<td>HS</td>
<td>HS</td>
<td>HS</td>
</tr>
</tbody>
</table>

HS = Highly Saturated

Polyolefin Dispersions provide excellent OGR which is maintained after creasing.
Moisture Resistance of Polyolefin Dispersion Coatings

<table>
<thead>
<tr>
<th>Dispersion</th>
<th>% Solids</th>
<th>Brookfield Visc (cP)</th>
<th>pH</th>
<th>Cobb 120 (g/sqm/120 sec)</th>
<th>MVTR (g/sqm/24hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyolefin Dispersion E</td>
<td>50%</td>
<td>56</td>
<td>12</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>Polyolefin Dispersion B</td>
<td>44%</td>
<td>510</td>
<td>11</td>
<td>7</td>
<td>420</td>
</tr>
<tr>
<td>None</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>28</td>
<td>950</td>
</tr>
</tbody>
</table>
Summary

• Attributes of polyolefins are available in a water-borne dispersion
• PODs provide unique properties
 • Adhesion to polyolefins
 • Heat sealability
 • Barrier properties
• PODs create opportunities for innovations in building existing and novel structures
 • Paper and Board
 • Films
 • Foams
 • Textiles
 • Many Others
Acknowledgements

Brad Moncla
Talia Collins
Rob Cotton
Charles Diehl
John Homoelle
Wenbin Liang
Mike Levinson

Gary Strandburg
Miguel Prieto
Mark VanSumeren
Kevin Maak
Matt Kalinowski
Pekka Salminen
Roebi Urscheler
THANK YOU

PRESENTED BY
Ronald Wevers
Dow Chemical
rwevers@dow.com