Additives Primer
Blown Films, Cast Films & Extrusion Coating

Dr. Prakash R. Patel
Director R&D
Ampacet Corporation
“Common” Additives for PE & PP Films

- Slips
- Antiblocks
- Antistats
- Antifogs
- Antioxidants
- UV absorbers
- UV inhibitors
- Fillers
“Exotic” Additives

- Nucleating/Clarifying agents
- Flame Retardants
- Antimicrobials
- Oxygen scavengers
- Odor absorbers
- Desiccants
Processing Temperatures for PE films

• Blown Film - Typically < 400F
• Cast Film - Range from 450 to 550F
• Extrusion Coating – Generally > 600F
• Challenges for high temp. processes (Cast film & extrusion coating)
 – Thermal Stability of additives
 – Moisture adsorption by additives
Slips: Mechanism

Layers Of Slip molecules

Slip Migration

Plastic Film
Slips

- Erucamide & Oleamide - most commonly used
- Challenges:
 - COF Control - Correct Loading
 - Thermal Stability (CF, EC)
 - Heat sealing
 - Printing
 - Maintenance of corona treatment
 - Adhesive laminations
 - Transfer on a roll
Antiblocks - Mechanism

Antiblock Particles

PE film layers

Film with Antiblock

Film without Antiblock
Antiblocks

• Diatomaceous earth (DE) and Talc - the most commonly used

• Challenges:
 – Quality of dispersion
 – Particle size & film layer ratios
 – Abrasiveness
 – Haze/Clarity
 – Correct loading (Related to polymer type)
 – Synergy with slips
Antistats - Mechanism

Layer of Antistat molecules

Charge Dissipation

Plastic Film

Antistat Migration
Antistats

- Various Chemistries- Amines, Amides & Esters most common
- Challenges:
 - Knowledge of specifications
 - Humidity Dependent
 - Migration slow- properties are time dependent
 - Polymer selection (Diff. AS chemistry)
 - Correct Loading (Multilayer films)
Antistats

• Challenges:
 – Thermal stability (CF, EC)
 – Heat Sealing
 – Printing (Ink Adhesion)
 – Maintenance of corona treatment
 – Adhesive Laminations
 – Other additives
Antifogs- Mechanism

Flat film of water

Layer of Antifog molecules

Antifog Migration

Plastic Film
Antifogs

- Chemistries must be FDA approved
 - Limited Chemistries
- Challenges:
 - Migration slow- properties are time dependent
 - Polymer selection (Diff. AF chemistry)
 - Correct Loading (Multilayer films)
 - Performance dependent on film structure, type of test, test equipment etc.
Antifogs

• Challenges:
 – Thermal stability (CF, EC)
 – Heat Sealing
 – Printing (Ink Adhesion)
 – Maintenance of corona treatment
 – Adhesive Laminations
 – Other additives
Electromagnetic Spectrum

- **Infrared (IR)**: 750 - 35000 nm
- **Visible light**: 400 - 750 nm
 - Red: 647-750 nm
 - Orange: 585-647 nm
 - Yellow: 575-585 nm
 - Green: 490-575 nm
 - Blue: 424-490 nm
 - Violet: 400-424 nm
- **Ultra Violet (UV)**: 200 - 400 nm
- **X Rays**: 0.01 - 10 nm

Intensity of the total sun irradiation is expressed in Kilolangleys (Kly):

1 Kly = 4.184 KJ/cm²
UV Absorbers vs. UV Inhibitors

- UV light (high energy) - can degrade the polymer as well as degrade the contents of a plastic package
- UV inhibitors - added to prevent polymer degradation and protect the film or the plastic package itself
- UV absorbers - added to absorb UV light & protect contents of a package
 - Organic UV absorbers
 - Inorganic UV absorbers
Organic UV Absorbers

- Efficiency
 - Lambert-beer’s law
 \[\text{Abs} = k \cdot t \cdot c \]
 - Abs = Absorbency
 - k = extinction coefficient
 - t = thickness
 - c = concentration
 - UV absorbency is proportional to additive concentration and film thickness
 - Only for “thick” film (above 100µm)
 - Compatibility limit: 5000-6000ppm
UV Screening of 100µm films containing 2000ppm Organic UV Absorber 1 (2% 10057) and 2000ppm Organic UV Absorber 2 (100645)
UV Absorbers

- **Challenges:**
 - Blocking UV light completely in a thin, transparent film (< 100 µ)
 - Organic UVAs
 - Additive migration
 - Yellowish color
 - Inorganic UVAs
 - Quality of dispersion
 - Haze/poor clarity
UV Inhibitors

- Protect the polymer from degradation caused by exposure to UV light
- Scavenge free radicals
- Hindered Amine Light Stabilizers (HALS) are the most common ones
Auto Oxidation Cycle

1. UV light/Heat causes HALS to initiate the cycle.
2. HALS reacts with ROO. forming ROOH.
3. ROOH decomposes to form RO. + HO.
4. RO. reacts with oxygen to form ROO. + RH.
5. ROO. reacts with polymer to form ROO.+ polymer.
6. RH reacts with HALS to resume the cycle.
UV Inhibitors

• Challenges:
 – Correct loading
 – Proper selection of HALS
 – Interaction with other additives
 – Interaction with acidic chemicals such as pesticides & herbicides
Antioxidants

- Protect the polymer from thermal degradation
 - Processing
 - Long term storage under hot conditions
- Hindered phenols (primary AO) and phosphites (secondary AO) are the most common
Auto Oxidation Cycle

ROO. + RH → ROOH
ROOH → ROO. + RH
ROO. + HO → RO. + HO
RO. + R → polymer

Phenols
Phosphites
Oxygen
UV light/Heat
Antioxidants

• Challenges:
 – Discoloration such as pinking or yellowing caused by phenolic AOs (biggest challenge)
 – Hydrolysis of phosphites
 – Correct loading
SUMMARY

• Additive Challenges:
 – Proper chemistry selection & correct loading
 – Migration (slips, antistats, antifogs)
 – Thermal Stability/Smoking (cast film & extrusion coating)
 – Heat sealing, Printing & Adhesive Lamination
Thank You

Prakash R. Patel, Ph.D.
Director R&D
Ampacet
prakash.patel@ampacet.com

Please remember to turn in your evaluation sheet...