High Performance Foil Rotor Improves De-Ink Pulp Screening

Cameron Pflueger

James A. Olson, Sean Delfel, Carl Ollivier-Gooch, Pat Martin, Frederic Vaulot and Robert W. Gooding

Department of Mechanical Engineering, Pulp and Paper Centre, University of British Columbia, Canada

1Advanced Fiber Technologies, Montreal, Canada
2Catalyst Paper, Paper Recycling Division, Coquitlam, Canada
Our Goal

To help our customers by:
- enhancing pulp quality (efficiency / fractionation)
- increasing capacity
- reducing power consumption
- reducing the overall cost of pulp screening
Pulp Screening Basics

- Pressure screens are essential for contaminant removal and fibre fractionation
- Cylinders and rotors are the key performance parameters
Nomenclature

Positive Peak, P_{max}

Negative Peak, P_{min}

Pulse Width

Pressure Coefficient: \[C_P = \frac{P}{\frac{1}{2} \rho V_t^2} \]

Power Consumption: \[C_{\text{Power}} = \frac{P}{\rho V_t^3 D^2} \]
Previous Work

Wall Cp vs. foil camber (numerical, Feng et al. 2005).

Wall Cp vs. foil camber (numerical, Feng et al. 2005).
CFD Single foil
CFD Single foil

Wall Cp vs. angle-of-attack for a NACA 0012 foil (numerical, Feng et al. 2005).

\[C_P = \frac{P}{\frac{1}{2} \rho V_t^2} \]
New Developments

Foil Parameters Studied:
- Angle-of-attack (α)
- Flap Angle (δ)
- Flap positioning

Canadian Forces C-130

Anderson, 1991
Results

Flap angle was varied at a constant α:

$\delta = 7^\circ$:
Results

Flap angle was varied at a constant α :

$\delta = 15^\circ$:
Results

Flap angle was varied at a constant α:

$\delta = 22^\circ$:

[Image of a diagram showing flow characteristics with a legend indicating pressure values.]
Results

Flap angle was varied at a constant α:

$\delta = 29^\circ$:
Results

Flap angle was varied at a constant α:

$\delta = 36^\circ$:
Results

The α- and δ- sweep data was combined to create surfaces of max. and min. wall C_P.

Min. C_P vs. α and δ. The ‘x’ marks the optimum of $C_P = -0.82$ at $\alpha = 1.2$ deg. and $\delta = 16$ deg.
Results

Surfaces were constructed of min. and max. wall C_P vs. x- and y- position of the flap LE:

Min. C_P vs. x and y positions of the flap LE. The optimum of $C_P = -0.82$ is at $x = -0.05*c$ and $y = -0052*c$.
Mill Trial – De-Ink Fine Screen
Mill Trial – De-Ink Fine Screen

Catalyst Paper, Paper Recycling Division Flowsheet
Mill Trial – De-Ink Fine Screen

![Graph showing power (kW) vs. tip speed (m/s) with data points for DEF Rotor and OEM Rotor. The graph indicates a 42% increase in power at a certain tip speed.](image-url)

- Power (kW)
- Tip Speed (m/s)

DEF Rotor

OEM Rotor
Mill Trial – De-Ink Fine Screen

![Graph showing Stickies Removal Efficiency vs Tip Speed (m/s)]

- DEF Rotor
- OEM Rotor
Mill Trial – De-Ink Fine Screen

![Bar Chart]

Stickies Removal Efficiency

- **OEM Rotor**
- **DEF Rotor**

Comparison between OEM Rotor and DEF Rotor for Stickies Removal Efficiency in Count and Area.
Mill Trial – De-Ink Fine Screen

![Graph showing stickies distribution](image)

Accept Stickies Concentration (number per gram)

- OEM Rotor
- DEF Rotor

Stickies Distribution (mm²)
Conclusions

- Multi-element foil technology allows for greater control of pressure pulse.
 - Wider, stronger pulse can be obtained
- Reducing Rotor Speed Increases Stickies Removal Efficiency
- Power savings of 42% have been shown thus far with equivalent OEM rotor capacity
- Preliminary mill trials extremely promising.
Thank you!

Questions?