Evaporator Fouling

David T. Clay
Senior Process Consultant
Jacobs Engineering

Outline

• Types of fouling
• Mechanisms of formation
• Operating strategies to avoid fouling
• Methods for cleaning evaporators
Locations of Evaporator Fouling

- Soluble Na scales
- Insoluble Ca scale
- Lignin precipitation
- Soap fouling

AQ (vapor side)

Alumosilicate

Fiber clumps

Fiber mats

1 2 3 4 5 6

Soluble Sodium (Na) Scales

- BL contains about 35% dissolved salts
- Salts can precipitate as scale in evaporators
- Na^+, $\text{SO}_4^{\text{-}}$, and $\text{CO}_3^{\text{=} \text{ cause scaling}}$
- Scale composition mostly Na_2SO_4 and Na_2CO_3
- Appear brown, grainy, dense, and hard
 - Deposit samples dissolve in hot water
- Can be removed by boiling out
Crystal and Scale Types
(for 12% Na$_2$CO$_3$+Na$_2$SO$_4$ in BLS)

Onset of Crystallization

- Below critical solids all Na salts are dissolved
- Critical solids typically ~ 50% and 55%
- Crystallization point 1-5% above critical solids
- First salt depends on CO$_3$/SO$_4$ ratio in BL
 - Low ratios: Burkeite (~2Na$_2$SO$_4$•Na$_2$CO$_3$)
 - High ratios: Dicarbonate (~2Na$_2$CO$_3$•Na$_2$SO$_4$)
- For BL > 110°C (230°F), slight inverse solubility of salts
Transition to Dicarbonate Crystallization

- Crystallization removes dissolved Na salts from BL
- If burkeite first, two Na$_2$SO$_4$ removed per Na$_2$CO$_3$
- When Na$_2$SO$_4$ depleted, burkeite can’t form
- Solids content at onset decreases with increasing CO$_3$/SO$_4$ ratio in black liquor

Reduce Na Scale in LTV Evaporators

- Reduce Na$_2$CO$_3$
 - White liquor from recaust contains Na$_2$CO$_3$
 - Improve causticizing efficiency, 80 - 82%
- Reduce Na$_2$SO$_4$
 - Increase RB reduction efficiency, > 90%
 - Add saltcake/spent acid after LTV bodies
- Reduce total Na in black liquor
 - Control AA-to-wood target at digester
 - Reduce NaCl deadload
- Operate about 2 - 3% below critical solids
Soluble Na Scale in FF Evaporators and Concentrators

- Falling film evaporators are not susceptible to burkeite scale
- Concentrators typically operate where dicarbonate fouling can occur
- All concentrators are crystallizers
 - Want crystallization on suspended solids, not heater surface
 - Dicarbonate crystallizes only on dicarbonate
- Tools being developed to determine where in concentrator dicarbonate crystals will form

Reducing Na Scale in FF Concentrators

- Operate with solids profile that avoids running any effect at the crystallization point of dicarbonate; preferable to operate above it.
- Start up with product liquor
- Use high liquor recirculation rates
- Long residence time in concentrator
- Distribute liquor uniformly on heater surfaces
- Operate to avoid upset conditions
 - Slow, ramped changes in operation
 - Minimize changes in black liquor composition
Evaporator Configuration Where Dicarbonate Fouling Will Occur in 1B, Why?

- No Crystals
- Burkeite
- Dicarbonate

% of Na$_2$CO$_3$ and Na$_2$SO$_4$ that remain in solution

Raising Product Solids Avoids Dicarbonate Fouling In 1B, Why? What about 1A?

- No Crystals
- Burkeite
- Dicarbonate

% of Na$_2$CO$_3$ and Na$_2$SO$_4$ that remain in solution
Insoluble Calcium (Ca) Scale

- Dissolved Ca precipitates as insoluble CaCO$_3$ or Pirssonite (Na$_2$CO$_3$•CaCO$_3$)
- White or tan scale with high (>20%) calcium
 - Deposit samples dissolve in acid
- CaCO$_3$ scale cannot be removed by boiling out
 - Hydroblasting required
 - Acid or chemical cleaning after
- Pirssonite is partially soluble due to its Na$_2$CO$_3$

Dissolved Calcium in BL

- Calcium in BL has very low solubility
 - Solubility product indicates ~ 50 ppb (μg/Kg)
- BL organics keep Ca in solution
 - Typical dissolved Ca in BL ~ 200 to 2000 ppm (mg/Kg on BLS)
 - Soluble Ca is from wood, not lime carryover
- Difficult to control Ca input to black liquor
 - Good debarking helps
Mechanism For Ca Precipitation

- High temperatures break down organic
 - Occurs near heat transfer surfaces
 - Ca$^{2+}$ is released, combines with CO$_3^{2-}$
 \rightarrow deposits on surfaces
- Typically occurs at \sim 250°F (120°C)
 - Can occur at 220°F (104°C) in displacement batch pulping liquors

Mechanism of Ca Scale Deposition

~ 250°F

Ca-organic breaks down
CaCO$_3$ deposits form

Ca-organic stays together
Ca stays dissolved
Reducing Ca Scale in Evaporators

- Limit steam pressure to evaporators
 - Max pressure ~ 30 to 35 psig (capacity?)
- Improve soap skimming efficiency
 - Soap contains high soluble calcium
- Add tall oil spent brine (laden with calcium) after the evaporators
- Improve debarking
- Thermal deactivation

Aluminosilicate Scale

- Thin, glassy scale in mid-to-high solids effects
 - Deposit samples do not dissolve in most solvents
- Caused by dissolved Al and Si in BL
 - Al is 30 to 300 ppm (mg/Kg) of BLS
 - Si is 300 to 2000 ppm of BLS
- Concern when Al > 150 to 200 ppm of BLS
- Hydroblasting required
Control of Al-Si scales
Which may apply to your mill?

- Decrease bark and dirt in chips
- Decrease Al-Si in water and make-up lime
- Avoid white water in brown stock washing
- Minimize use of silicon-based defoamers
- Increase Al-Si purges in dregs and grits
 - Mg in GL can aid Al removal with dregs

Fouling Due to BL Soap

- Soap can be incorporated into other scales
 - Deposit samples have slippery appearance
- Contains high fiber content and soluble Ca
- Can increase fouling rates
- Controlled by controlling other scales
- Only remedy is better soap skimming
Fouling Due to Fiber Plugs

- Fiber can form mats in low-solids effects
 - Heavier than weak liquor
 - Concentrates in stagnant areas
- Calcium carbonate can deposit on fiber in mid-solids effects, forming clumps
- Dislodged mats and clumps can plug tubes
 - Fiber is obvious in magnified deposit samples

Fiber Fouling in Falling Film Units

- Clumps stick in distributor plate openings
- Causes poor liquor distribution
- Only remedy is fiber removal from liquor
- Install and maintain fiber filter
 - Target < 100 ppm fiber in BL streams to evaps
Fouling Due to Lignin

- Lignin precipitates at low liquor pH
 - Deposit samples are soft and gunky
- Maintain weak liquor pH > 12
- Control residual EA from digester
- Neutralize acidic inputs
 - ClO_2_ plant sesquisulfate
 - Tall oil plant brine
- Add caustic or white liquor

Cleaning Evaporators

- Boiling out
 - Dissolves Na scales
 - Removes hard scales by thermal shock
- Hydroblasting
- Chemical cleaning
 - Muriatic acid
 - Sulfamic acid
 - Phosphoric acid
 - Chemical / chelant wash
Boiling Out Evaporators

- Boil out procedures
 - Full
 - Front half (1st and 2nd effect)
 - Back half

- Wash liquid
 - Keys: dilution and time
 - Weak liquor (15% to 35%)
 - Condensate
 - Fresh water

Front Half Boil Out

Combined condensate

Feed liquor

To weak storage or spill tank
Boil Out Problems: Rapid Recovery

Rapid return of salt-rich liquor from storage

Rapid fouling and plugging

Boil Out Problems: Shortcut Boils

What is wrong with this picture?

Total Solids, wt. %

Solubility Limit
Boil Out Guidelines

- Transfer boil-out liquor back to evaporator feed as slowly as possible
- During boil must drop below solubility limit and hold long enough to dissolve crystals
- Controlled product liquor recirculation may restore crystal population after boils

Implications for Evaporator Operation

- Many potential causes for fouling
- Remedies often involve other areas of the mill
 - Recovery boiler for Na$_2$SO$_4$ input to BL
 - Recaust for Na$_2$CO$_3$ input to BL
 - Digester for total Na and residual EA
 - Brownstock washing / screening fiber input to BL
 - Wood room for bark (Ca) and dirt input to liquor
Implications for Evaporator Operation

• Some remedies involve evaporator operation
 – Handling boiler ash and Na/S waste streams
 – Limiting steam pressure
 – Soap skimming
 – Flow configuration, boil out procedures
 – Steady controlled operation, steady liquor transfers

Final Words

• Mitigating recurrent fouling can be counter-intuitive in some cases
 – Higher concentrator product solids
• Operating culture difficult to overcome
 – Hard piping or automating changes
 sometimes the only way to solve problems
Acknowledgement

• Christopher L. Verrill
 International Paper Corporation
 – Author and presenter of 2007 slides, which formed the basis of this presentation.