CORROSION AND CRACKING IN RECOVERY BOILERS

W. B. A. (Sandy) Sharp
SharpConsultant,
Columbia, Maryland, U.S.A.

TAPPI Kraft Recovery Short Course
St. Petersburg, Florida, January 7-10, 2007

INTRODUCTION

- Different sets of chemical, mechanical and thermal parameters in different parts of an RB cause many different forms of corrosion and cracking

- Understanding their causes can help us
 - implement proven strategies to control corrosion
 - reduce risks of cracking failures
OUTLINE

- Introduction
- Lower furnace:
 - floor tubes and lower furnace tubes
 - air ports
 - molten smelt environments
- Upper furnace and furnace screen
- Superheater
- Generating bank
- Economizer, precipitator and stack
- Waterside
OUTLINE

- Lower furnace:
 - floor tubes and lower furnace tubes
 - cracking in composite floor tubes
 - air ports
 - cracking in wall tubes at smelt spouts and airports
 - molten smelt environments
- Upper furnace and furnace screen
- Superheater
 - cracking in generating bank tubes and in pendant tubes at restraints
- Generating bank
 - caustic cracking in boiler drums
- Economizer, precipitator and stack
- Waterside
 - stress-assisted waterside corrosion

FLOOR TUBES AND LOWER WATERWALL TUBES (1)

- Most smelt-water explosions occur here
- Reducing gas environment contains
 - insufficient O₂ to form Fe₂O₃ on CS tubes
 - sufficient TRS to stabilize FeS
Boilers operating at > about 900 psi produce unacceptably high corrosion rates on CS

Reduce tube surface temperatures by anchoring an insulating frozen smelt layer with studs
TO REDUCE CORROSION RATES OF CARBON STEEL TUBES (2)

Form more protective surface oxides by alloying with Cr
- Composite tubes
- Thermal spray coatings
- Chromizing

FIRESIDE CRACKING IN COMPOSITE TUBES (1)

- Cracking of composite tubes not normally found without cracking in
 - composite spout opening tubes
 - composite floor membranes
- Sloped floor units tend to crack on
 - bent floor tubes
 - near spout openings
- Fortunately floor tube cracks stop at SS/CS interface
Cracking probably occurs during shutdowns.

SCC occurs in 304SS under tensile stress in conc. Na₂S·9H₂O + NaOH at 320-392°F (160-200°C).

FEA shows local temperature excursions produce tensile stresses that remain after cooling.

FEA shows Alloy 825- and Alloy 625- clad tubes develop much lower tensile stresses than 304L SS.

Alloy 825-clad and Alloy 625-clad tubes develop much lower tensile stresses than 304L SS
FIRESIDE CRACKING IN COMPOSITE TUBES (4)

- Do not begin to water wash till floor tube temperatures fall below 160°C (320°F)
- Clean all smelt from floor tubes before firing boiler
- Replace cracked floor tubes with 825- or 625- clad tubes
- Consider eliminating floor temperature spikes by installing packed refractory or interlocking tiles

PORT TUBES (1)

- Carbon steel tubes:
 - Furnace side thinning caused by exotherm
 - Windbox side thinning in air port “corners”
 - Molten NaOH condenses on cool tubes in absence of CO₂
 - NaOH fluxes Fe₃O₄, produces NaFeO₂
- Eliminate stagnant areas by
 - Maintaining refractory packing
 - Avoid high-Cr refractories because
 - NaOH dissolves Cr₂O₃ as NaCrO₄
PORT TUBES (2)

- Composite tubes:
- Furnace side wastage caused by exotherm
- NaOH fluxes otherwise protective Cr$_2$O$_3$
- Corrosion faster on SS (0.01 - 0.05” per year) than on exposed CS (0.03 - 0.08” per year)
- Produces expanding but not deepening “bald spots”

PORT TUBES (3)

Inhibit “balding” of composite air port tubes by maintaining refractory packing to eliminate stagnant air pockets

Repair bald patches by pad welding with Alloy 625
CRACKING IN COMPOSITE AIR PORT TUBES (1)

Thermal fatigue cracking in CS and SS tubes that form primary air ports can penetrate carbon steel inner layer.

Temperature cycles
- when insulating frozen smelt removed by rodding
- when molten smelt washes against tubes

Cracking aggravated by residual tensile stresses
- from forming of tube bends
- from attachment welds

CRACKING IN COMPOSITE AIR PORT TUBES (2)
CRACKING IN COMPOSITE AIR PORT TUBES (3)

- Maintenance:
 - Improve firing practices to minimize thermal spikes
 - Replace cracked 304L-clad tubes with Alloy 825-clad or Alloy 625-clad composite tubes

MOLTEN SMELT (1)

- Molten smelt delivers high heat flux, especially when flowing
 - thin insulating frozen smelt layer on tubes
 - dissolves or erodes protective corrosion products

- Rates up to 50” per year on CS if metal is as hot as smelt
MOLTEN SMELT (2)

Smelt line corrosion

MOLTEN SMELT (3)

- Water-cool spouts to stabilize frozen smelt layer
 - Lowering cooling water temperature 40°F can increase spout life x 4
- Use stainless spout materials for greater corrosion resistance
CRACKING CAUSED BY MOLTEN SMELT

- Rodding causes sudden heating that can produce thermal fatigue cracks
- Smelt washing causes similar thermal cycles
- Inspect at smelt line
- Attachment welds (heat sinks) on fireside of composite tubes initiate cracks because of differential thermal expansion

UPPER WATERWALLS, ROOF AND FURNACE SCREEN (1)

- Radiant heat flux lower, pO₂ higher than in lower furnace
- Protective oxides stabilized
- CS tubes OK because corrosion rates 2-3 x lower than in lower furnace
UPPER WATERWALLS, ROOF AND FURNACE SCREEN (2)

Potential problems:
- Cold-side pitting on tangent tubes
 - Minimize time of wetness of cold side tube deposits (0.001" per day)

UPPER WATERWALLS, ROOF AND FURNACE SCREEN (3)

Potential problems:
- Low m.p. NaHSO₄ deposits (cool beds, high SOₓ) flux off otherwise protective oxides, cause pitting
 - Improve operational control
- Locally reducing environments under partly-burned liquor particles cause corrosion similar to lower furnace corrosion
 - Reduce excessive load
GENERATING BANK (1)

- Environment relatively cool and oxidizing
 - Corrosion rates generally low (~ 0.001” per year)
 - CS tubes designed with low or non-existent corrosion allowance

- Potential problems: Sootblower erosion, when steam contains water droplets, especially near boiler walls
 - Use IRIS or eddy current to detect thinning
 - Add condensate traps

GENERATING BANK (2)

- Potential problem
 “Near-drum thinning” <0.5" from drum surface. Elliptical depressions where sootblowers blow dust from drum surface against tubes, scouring off oxide
 - Use IRIS or eddy current to detect thinning
 - Use shields to limit thinning
Generating Bank (3)

Potential problems:

- Low m.p. NaHSO$_4$ deposits (cool beds, high SOx) flux off otherwise protective oxides, cause pitting
 - Improve operational control

Caustic Stress-Corrosion Cracking in Boiler Drums

- Caustic SCC ("caustic embrittlement") occurs in CS if tensile stress, > 5% NaOH, > 300°F
- Water leaks from tube seals flash, concentrate water treatment chemicals at drum surface
- Drum hole surfaces in tensile stress from rolling stresses and operating stresses
- Can produce hole-to-hole stress-corrosion cracks in drum, especially if high-strength steel
- Re-rolling and seal welding often causes more problems
SUPERHEATER (1)

Highest surface temps: strongly oxidizing conditions

- **Case 1: Surface Deposits Frozen**
 - CS tubes corr. rate OK to 750°F (400°C): Fe$_3$O$_4$
 - Add Cr for higher temperatures: (Cr,Fe)$_3$O$_4$
 - Stabilized γ SS for highest temps: Cr$_2$O$_3$

- Some use composite (310/SS) tubes because of concerns about
 - Waterside SCC
 - Windward surfaces sulfidized by unburned liquor particles

SUPERHEATER (2)

![Graph showing weight loss vs. temperature](image)

- Weight Loss, mg
- Temperature, F
SUPERHEATER (3)

- Case 2: Surface Deposits Molten
- Existing alloys have unacceptably short life
- Beware of partial pluggage (unbalanced gas flow) that could heat deposits above their m.p.
- Corrosion rate x 4 in 5ºF temperature increase at deposit m.p.
- High Cl, high K, high Na/S ratio, low bed temp; all depress m.p. of deposits
 - Avoid these conditions
 - Remove deposits regularly with sootblowers

GEN. BANK, PENDANT TUBE CRACKING AT RESTRAINTS (1)

- Fireside fatigue cracks initiate at nodes, e.g.
 - where vibration bar clamps restrain pendant tubes at toe of welds attaching adjacent pendant tubes
 - where a generating bank tube passes into a drum
 - where an economizer tube is welded into a header
- Cracks often appear as pairs on either side of a tube in the plane of vibration
 - propagate toward tube center, largely unaffected by corrosion processes
- Minor leaks can thin large areas on adjacent tubes and produce fish-mouth ruptures
GEN. BANK, PENDANT TUBE
CRACKING AT RESTRAINTS (2)

Vibration bars problematic in generating bank unless drum-to-drum distance exceeds 31’

Where vibration bars are required, make them from Type 304L stainless steel

Sootblowing (particularly with high energy nozzles) makes pendant tubes swing and causes high amplitude vibration. Both promote fatigue corrosion

- Evaluate sootblowing; avoid excess
- Inspect attachment welds for sharp corners or profile and thinning caused by rubbing.

GEN. BANK, PENDANT TUBE
CRACKING AT RESTRAINTS (3)
ECONOMIZER, PRECIPITATOR AND STACK (1)

- Flue gases oxidizing and cool; corrosion damage rare
- Some units suffer sootblower erosion, external fatigue cracking, dew point corrosion

ECONOMIZER, PRECIPITATOR AND STACK (2)

- Below water dew point (155-170°F; 68-77°C)
 - moisture condenses
 - acid flue gases dissolve
 - pH falls (3.0 - 2.5)
 - CS corrodes at up to 0.030 ipy.
- Find cold spots with IR thermography
ECONOMIZER, PRECIPITATOR AND STACK (3)

- Insulate and/or heat shell
 - more cost-effective than higher exit gas temp.
- Where condensation is unavoidable (e.g. wet-bottom precipitator liquor line), use polymer coatings or SS

WATERSIDE CORROSION (1)

- Most waterside damage is caused by inadequate feed water quality or improper chemical cleaning
 - Both need careful monitoring
- Thick deposits inhibit heat transfer, raise tube temperatures, thin even composite tubes
- Measure deposit thickness on tubes that experience high heat transfer (near burners, at smelt line) to determine how and when to chemically clean
WATERSIDE CORROSION (2)

- Localized deposits cause “oxygen pitting” where under-deposit environment is starved of oxygen.
- High NaOH resulting from local boiling or waterline evaporation produces localized “caustic gouging” with smooth contour.
- Foreign body tube blockage causes rapid corrosion/rupture where cooling is lost.

WATERSIDE STRESS-ASSISTED CORROSION (1)

- Slow-growing waterside fissures “under” external attachment welds.
- Despite mfr. cautions, mills did not inspect until Missoula explosion (1991). First inspections found 80% of RBs >12 years old contained SAC. Many replaced CS lower furnace tubes.
WATERSIDE STRESS-ASSISTED CORROSION (2)

- Common features of SAC fissures
 - all same depth
 - bulbous x-section

WATERSIDE STRESS-ASSISTED CORROSION (3)

- Recent research has shown
 - SAC occurs during low pH, high O₂ water quality upsets where waterside oxide is fractured by tensile thermal stresses
 - Heating to operating temperature produces waterside tensile residual stresses within ~1" of attachment welds
 - SAC has little effect on burst strength

- Most vulnerable are heavy attachment welds at floor-to-sidewall seals, windboxes, smelt spouts
 - Detect SAC and estimate its severity with specialized RT techniques
AVOIDING STRESS-ASSISTED WATERSIDE CORROSION

- Minimize SAC by avoiding feed water quality excursions
- Monitor chemical cleaning, consider chelant
- In new boilers, make attachments to membranes, avoid large, strong attachments
- In deaerators, avoid water hammer
 - Inspect welds at and below the water line
 - Check design calculations and weld quality in new vessels and stress relieve

CONCLUSION

- Use well-planned inspection programs to identify corrosion and cracking problems
- Implement strategies to reduce corrosion and inhibit cracking based on the underlying causes of each problem