UV-Waterborne Nanocomposite Coatings: Curing Kinetics Study

2009 International Conference on Nanotechnology for the Forest Products Industry, June 25th, 2009

Caroline Sow *, Bernard Riedl, Pierre Blanchet
* Wood Sciences Ph. D. candidate, Laval University, Québec

www.cuisineslaurier.com
Introduction

- Paint and coatings industries
 - Use important quantities of finishing products (solvent based)
- Importance of environmental protection interest
 - Review of regulations (VOCs emission)
- Development of more eco-friendly products
 - UV-cured coatings
- Wood products industry
 - Shift from solvent-based to waterborne coatings
- UV-waterborne coatings
 - Meet requirements of the industry (mechanical properties)

Investigation of nanocomposite approach
UV-Waterborne Coatings

- **Advantages**
 - Fast
 - No emission of VOCs
 - Excellent mechanical properties (abrasion and scratch resistance)
 - Good optical properties (gloss, yellowing)

- **Disadvantages**
 - High water surface tension → difficulties of wetting
 - Sensitive to oxygen → polymerization inhibition
 - Lower properties
 - Higher price

{vs high solid content coatings}
Some current nanoparticles and their properties

<table>
<thead>
<tr>
<th>Nanoparticles</th>
<th>Alumina</th>
<th>Zinc oxide</th>
<th>Silica</th>
<th>Clays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrasion resistance</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Hardness</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>UV Protection</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimicrobial</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scratch resistance</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Fire barrier</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Mechanical properties</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Material

- **Formulation**
 - PUA resin
 - Photoinitiator

- **Nanoalumina and modified nanosilica**
 - High specific surface area + Hydroxyl group
 - difficult dispersion in aqueous media
 - Surface modification by trialkoxysilanes
 - dispersibility improvement in acrylate media

- **3 loading rates: 1, 3 and 5 wt%**
 - Suitable mechanical properties → less quantities of nanoparticles
 - high efficiency
- Measure of the gloss retention at 60°
- Nanoparticle addition → scratch resistance
- Coatings based on nanosilica → important of scratch resistance
- Grafting trialkoxysilanes → acrylate functions and acrylate double bonds
Polymerization process

- Understanding is essential
- Fast and efficient polymerization

Optimize the curing process

- Temperature
- Resin type and concentration
- Photoinitiator type and concentration
- UV-light intensity

Photo-DSC

- Simple and efficient way
- Evaluate the curing kinetics
Experimental

- Nanoparticles dispersion
 - Ultrasound

- Photo-DSC experiments
 - Differential scanning calorimeter
 - Light source = mercury-xenon lamp

- Process
 - Previous drying
 - $I = 47 \text{ mW/cm}^2$
 - $T = 30^\circ\text{C}$, air flow

- Exothermic curves
 - Heat flow as a function of reaction time

1 wt% nanoAl$_2$O$_3$ - 10 min (750 W à 50 %)
- Exotherms under nitrogen conditions → observed by 2 authors
- Drying before UV-curing → free-radical polymerization in solid state
- Humidity in air atmosphere = plasticizer effect → chain mobility in dried films → UV-curing efficiency
Nanoalumina Effect

- Nanoalumina addition \rightarrow exotherms
- High specific surface area and $-OH$ groups \rightarrow aggregates presence
- Effect at 1, 3 et 5 wt% fairly equivalent \rightarrow aggregates effect more important that loading effect
Nanosilica Effect

- Nanosilica addition → exotherms
- Aggregates presence
- Effect at 3 et 5 wt% fairly equivalent → aggregates effect is predominant
Nanoparticle Type Effect

- Exotherms FAnU1 < FSnU5
- Surface modification of nanosilica \rightarrow aggregates size and amount
- Number of acrylates functions and reactive groups \rightarrow UV-curing efficiency
Interesting Advantages for All Coatings Industries

- Mechanical properties
 - Excellent scratch resistance
- UV-curing process
 - Presence of aggregates \rightarrow lower of efficiency
 - Fast
 - No effect of air atmosphere
- Surface modification
 - Improve mechanical and kinetics properties

Excellent properties with 1 wt% of nanosilica

Hajas J.; Lenz P.; Schulte K.; **Enhancing mechanical properties of UV-curing wood varnishes by synergistic combinations of silicones and nano-alumina particles**, *RadTech Europe Conf*, 2005

Acknowledgments

- Financial support
 - Economic Development Canada
 - Fond Québécois de Recherche sur la Nature et les Technologies
 - FPInnovations-Division Forintek

- Coating partner
 - Canlak

- Material Support
 - BykChemie
 - Ciba
UV-Waterborne Nanocomposite Coatings: Mechanical Properties and Curing Process Studies

Thank you

Caroline Sow *, Bernard Riedl, Pierre Blanchet
* Wood Sciences Ph. D. candidate,
Laval University, Québec

www.cuisineslaurier.com