Bio Coatings for Paper and Fiber Substrates
The Opportunity
Environmental Stewardship

• Improve Sustainability Footprint
 – Reduce dependence on petroleum derived resins
 – Favorable life cycle analysis (LCA)
 – Repulpable
 – Compostable

• Increase brand recognition with earth friendly message

• No opposition within the recycling community
Primary Markets

- Beverage Cups - Hot & Cold
- Take Out Containers
- Wrap - Sandwich/ Deli
- Frozen food and dairy containers
- Ream wrap
The Challenge

• Availability of a suitable bio polymer
 – Polylactic Acid (PLA) most available
 – New capacity added in 2008 to support demand

• Modifying Properties
 – Melt strength
 – Melt curtain stability
 – Adhesion
The Challenge

• Material Handling
 – Dry material (below 400 ppm)
 – Minimal openings in foil liners to reduce exposure to atmosphere
 – Moisture management during processing
 – Re-sealing bags when finished to reduce exposure to moisture
 – Use of dryers in some environments
The Challenge

• Processing
 – Designed for use on existing equipment
 – Lower processing temperatures
 • Target melt temperatures approx 460F-480F
 • Degradation starts at 480F
 – Susceptible to Shear
 • Screw Design Important
 • May not be suitable for high compression ratio screw designs
 – Production speeds near PE or LDPE
 – Minimal equipment or process modification goal
The Challenge

• Price
 – Currently, higher than LDPE
 – Less volatile price fluctuations

• The Right Partner/Brand Owner
Current Bio Polymer Solutions

- PLA based extrusion coatings
 - Commercial since 2006
- First to market - International Paper & Green Mountain Coffee
- Over 1 billion cups produced to date
- Several commercial projects in various stages of development
Current Bio Polymer Solutions

– Properties

• Excellent adhesion to paper and cellulose fiber substrates
• Stiffer, allowing reduction in fiber content
• Good WVTR (25 Micron film) – 375 grams/sq m/24hr @100%RH, 37C
• Good OTR- 700cc/sq m/24 hr @ 0% RH, 23C
• Specific gravity of 1.12
Current Bio Polymer Solutions

– Benefits

• High level of renewable content
• Uses less energy to process
• Compostable – meets ASTM D6400 standards
• Repulpable
• Excellent grease and liquid barrier
• Excellent odor barrier
• Excellent printability
• FDA approved
Current Bio Polymer Solutions

– Benefits
 • High level of renewable content
 • Uses less energy to process
 • Compostable – meets ASTM D6400 standards
 • Repulpable
 • Excellent grease and liquid barrier
 • Excellent odor barrier
 • Excellent printability
 • FDA approved
Current Bio Polymer Solutions

- Limitations
 - Not suitable for liquid packaging with extended shelf life
 - Price competitiveness vs. current petroleum resin pricing

- Competitive Offerings
 - Limited to date
On the Near Term Horizon

• Master batch version of PLA based resin
 – Lower cost
 – Made from 100% renewable materials
 – Broader processing window
 – Will meet the ATSM D6400 compostability standard
On the Near Term Horizon

• Wax Replacement
 – Drop in replacement for wax
 – 98% renewable materials
 – Lower coat weights than wax
 – Provides additional stiffness
 – More consistent product than wax
 – No residuals resulting from repulping process (deinking conditions)
 – Compostable
 – Competitively priced
Future Solutions

• PHA Polymers (medium to long chain molecular structures)
 – 100% bio based, renewable
 – Food contact, FDA certifiable
 – Suitable for liquid packaging
 – Excellent barrier properties (MVTR, OTR, WVTR)
 – Compostable
 – Biodegradable
 • Will degrade in a cold marine waters, septic tanks, or municipal waste water systems
 • Will degrade both in anaerobic & aerobic conditions
 – Lower cost
 – Broader processing window
 – Commercial quantities available in 12-18 months
Questions?