

Considerations for the Selection of Binder in Double and Triple Coated Systems

Effect of Under Layer Starch Migration on End Use Performance

Building Leadership Excellence

Greg Welsch and Marianne McKelvy

Styron, A Division of Dow, Midland, Michigan, USA

Francis Dobler and Monika Plass

Styron, A Division of Dow Europe GmbH, Rheinmuenster, Germany

Burgo Group – Ardennes Mill, Virton, Belgium

Talent, Technology and Transformation

PaperCon^{may 2-5}2010

Part 1: Triple Coated Wood Free Paper

What did we study?

- **Binding Power (BP)** of latex relative to starch in precoat and middle layer
- Precoat:
 - 100 parts coarse CaCO₃
 - Latex & DP starch level variable
- Midcoat:
 - 100 parts coarse CaCO₃ •
 - Latex & DP starch level variable
- Topcoat:
 - No starch ۲
 - Gloss and Silk formulations

What did we learn?

- Precoat: Latex BP = 2.0 2.5 x Starch BP
- Middle layer in glossy grades: Latex BP = 1.6 2.0 x Starch BP
- Middle layer in silk grades and uncalendered paper: Latex BP = 1.2 x Starch BP
- High levels of starch used in middle layer significantly slows down ink setting rate
- Supercalendering increases the binding power of under layer latex whereas for starch the binding power is actually decreased.

Part 2: Investigation of Starch Migration

What did we study?

- Hypothesis: Starch migrates from middle layer into topcoat when rewetted by topcoat application
- Analytical technique to measure presence of starch in topcoat
- Technique to quantify amount of starch migrating into topcoat

PaperCon

Building Leadership Excellence

What did we learn?

- Used infrared spectroscopy in surface sensitive ATR mode to detect and measure starch in the topcoat layer
- Starch detected in topcoat remains low for starch levels in middle layer up to 5 parts
- Up to 30-35% of the starch from middle layer can migrate into topcoat
- Accounts for some of the influence of starch in middle layer on end use properties of triple coated paper

Part 3: Double coated wood free paper

What did we study?

- Precoat:
 - 100 p coarse CaCO₂
 - Latex & starch level variable
 - Starch type variable TM or HE
- Topcoat:
 - No starch
 - **Gloss, Matte, and Dull formulations**

What did we learn?

- Confirmed similar migration behavior with TM and HE corn starch as w/DP starch
- As starch increased in precoat, more starch was detected in topcoat.
- % of starch migrating into topcoat stayed constant throughout precoat starch dosage range.
 - TM starch: 45-60% of precoat starch migrated into topcoat w/fine pigments and 26-34% migrated into topcoat w/coarse pigments.
 - HE starch: 17-25% of precoat starch migrated into topcoat w/fine pigments and 0-11% migrated ۲ into topcoat w/coarse pigments.
- For moderate to high levels of precoat starch, final paper quality was negatively affected:
 - All grades: Increased print mottle, slower ink setting, and more ink required to hit target density ۲

5

Glossy: Lower dry pick strength when starch used induced by calendering process

Building Leadership Excellence

Part 1: Triple Coated Wood Free

GOALS

- Assess the influence of latex and derivatized potato (DP) starch in pre and middle layers on the properties of triple coated papers
- Investigate the differences in binding power of latex and starch when used in precoat and middle layers
- Investigate glossy and silk grades

METHOD

- Experimental design and regression modeling
- Variation of latex and starch amounts in pre- and middle-layers
- Two different topcoat formulations with different finishing conditions

Building Leadership Excellence

Coating Layer Detail

Precoat:

• 4.5 g/m² – Film Coater

• 100 parts coarse CaCO₃

• Latex & starch variable

- 11.5 g/m² FN + Bent Blade
- Supercalendered

Top Coat: Silk (wire side)

- 11.5 g/m² FN + Bent Blade
- Soft calendered

Building Leadership Excellence

Middle layer:

- 8.0 g/m² FN + Rigid Blade
- 100 parts coarse CaCO₃
- Latex & starch variable

Talent, Technology and Transformation

Paper Testing and Data Analysis

Building Leadership Excellence

atlanta aa

Regression analysis

 S_p and S_m the starch levels in parts in precoat and middle layer

9

PaperCo

 L_{p} and L_{m} the latex levels in parts in precoat and middle layer

Latex and Starch "Binding Power"

		Precoat	Middle coat	
		binding power binding power ratio latex / DP ratio latex / D starch starch		
			α/β	γ/δ
Preco	at + Middle Coated	IGT pick resistance	1.1	0.8
Triple Coated	Un- calendered	IGT pick resistance	1.5	1.3
	Super- calendered	IGT pick resistance	2.1	2.2
Closey		pass to fail	high p-value not considered	1.7
Triple Coated Silk	Soft-	IGT pick resistance	2.6	1.1
	calendered	pass to fail	2.4	1.2

Building Leadership Excellence

In precoat: latex has about 2.1 to 2.6 times higher binding power than starch In middle coat:

silk papers: latex has about 10-20% higher binding power than starch

glossy paper: latex has 1.7 to 2.2 times higher binding power than starch

Talent, Technology and Transformation

Building Leadership Excellence

atlanta ga

Ink setting of the triple coated papers was:

- significantly reduced when starch was used in the middle layer
- not influenced by latex in middle layer, or starch or latex in precoat

PaperCon

Impact of Supercalendering on Binder Type

Building Leadership Excellence

			latex	starch	latex	starch
			α	β	γ	δ
Triple Coated Glossy	Un- calendered	IGT pick resistance	3.38	2.24	3.93	3.04
	Super- calendered	IGT pick resistance	3.8	1.8	5.44	2.52

Supercalendering

increases latex binding power

calender temp > Tg of latex promotes adhesion of latex particles on pigments

decreases starch binding power

calender temp < Tg of starch damages starch film

Talent, Technology and Transformation

Part 1 - Conclusions

Binding power (BP) of latex and starch

- Precoat:
- Middle layer, glossy grades:
- Middle layer, silk grades:

Ink setting rate

• Starch in middle layer significantly slows down ink setting of triple coated papers

Latex BP = 2.0-2.5 x Starch BP

Latex BP = 1.6-2.1 x Starch BP

Latex BP = 1.2 x Starch BP

- Can be an issue for silk and matte grades
- Can limit the amount of starch in middle layer.

Binding power - Effect of supercalendering

- Binding power of latex is increased by supercalendering
- Binding power of starch is decreased by supercalendering

Part 2: Investigation of Starch Migration

GOALS

- Develop hypothesis that explains results from Part 1
- Identify analytical technique that could detect starch in top layer
- Quantification of starch migration into top layer

METHOD

- Infrared spectroscopy (FTIR) in surface sensitive (ATR) mode
- Analyzed coating depth: 2 to 4.5 μ m $\rightarrow \rightarrow$ topcoat specific
- Starch absorption band was evaluated at 1150 cm⁻¹
- Develop calibration standards "known" starch levels in topcoat formulas
- Utilize calibration curve data to quantify amount of starch migration in papers from Part 1

14

Building Leadership Excellence

Migration of Starch from Middle to Topcoat

Building Leadership Excellence

	binding power ratio latex/starch		
	Precoat	Middle coat	
	α/β	γ/ δ	
Pre + Middle coated	1.1	0.8	
Triple coated Un calendered	1.5	1.3	

By application of topcoat layer:

- Binding power ratio increases by ~ 40% in both precoat an middle layer
- Starch in middle layer reduces ink setting rate of topcoat

Hypothesis

Migration of part of the starch from middle layer to topcoat

PaperCo

Talent, Technology and Transformation

16

05

04.

02

Analytical Proof – Detection of Starch in Topcoat

Paper K

Paper K

Starch, reference

- 7 parts starch in middle layer:
- "pronounced" starch band

• 2 parts starch in middle layer:

"very weak" starch band

Paper A

Building Leadership Excellence

Migration of Starch from Middle to Topcoat

Formulation	А	J	F	Ι	K
Precoat at 4.5 (g/m^2)	F1	F8	F5	F6	F8
Latex content (parts)	5	4	4.1	7.5	4
Starch content	4	11	5.4	8	11
Middle coat at 8.0 (g/m^2)	F11	F11	F12	F16	F16
Latex content	7	7	3	3	3
Starch content	2	2	5	7	7
Starch level in (g/m^2)	0.15	0.15	0.37	0.51	0.51
Topcoat at 11.5 (g/m^2)					
Estimated starch in topcoat (parts)	storah dat	(aatad but	0.5	1.6	1.8
Estimated starch in topcoat (g/m^2)	starch del	o low to	0.05	0.16	0.18
Fraction (%) of starch from middle layer which has migrated in top	quantif	y level (15%	32%	36%

Building Leadership Excellence

• Starch amount detected in topcoat increases with starch amount in middle layer

17

PaperCo

- Starch content detected in topcoat as high as 1.8 parts
- From 15 to 35% of the middle layer starch migrates into the topcoat
- Starch found in topcoat is low when < 5 parts starch is used in middle layer

Migration of Starch from Middle to Topcoat

Building Leadership Excellence

atlanta aa

Talent, Technology and Transformation

Part 2 - Conclusions

Building Leadership Excellence

PaperCon

Starch migrates from middle layer into topcoat when rewetted

- Accounts for some of the influence of starch in middle layer on end use properties of triple coated paper
- Starch content found in topcoat remains low for starch levels in middle layer at < 5 parts
- Starch content in topcoat can be as high as 1.8 parts when 7 parts starch run in middle layer

19

• Up to 35% of the starch from middle layer can migrate to the topcoat

Part 3: Double Coated Wood Free

GOALS

- Assess the influence of latex and type of starch in precoat layer on the end use properties of double coated papers
- Quantitative comparison of starch migration for two common starch types hydroxyethylated and thermally modified corn starch
- For gloss, matte, and dull grades

METHOD

- Experimental design and regression modeling
- Variation of latex and starch amounts in precoat
- Variation of starch type in precoat
- Variation of topcoat formulation glossy, matte, dull

Building Leadership Excellence

Double Coated Formulations

	Precoat		Topcoat Gloss	Торс Ма	coat tte	Topcoat Dull
Coated side	TS / WS		TS	W	S	WS
Calcium carbonate, coarse	100			1.	5	60
Calcium carbonate, fine			70	7()	40
High gloss clay, fine			30	14	5	
High strength SB latex	variable		10.5	10	.5	10.5
Thermally modified starch	variable					
Hydroxyethylated starch	variable					
CMC thickener			0.3	0.	3	0.3
Solids Content	variable		67.5%	68.3	3%	69.3%
Coating technology	Film coating		Rigid blade	Rig bla	gid de	Rigid blade
Speed (m/min)	915		765	76	5	765
Coat weight (g/m^2) / side	7.5		10.5	10	.5	10.5
Calender Nips / side			4	1		1
Calender Temp (°C)			275	27	5	275
Calender Pressure (kN/m)			350	60)	60
Thermally Modified Starch – Cargill C-Film 7311 Hydroxyethylated Starch – Penford PG 290						

Building Leadership Excellence

atlanta ga

Talent, Technology and Transformation

21

PaperCon²⁻⁵2

Starch and Latex Levels

Building Leadership Excellence

atlanta ga

	Binder	Lowest level	Highest level
Precoat	TM Starch or HE Starch	4	12
	Latex	3	9

	Тор	Coat Ru	n #				
Run #	latex	starch	starch	SC	Gloss "I"	Matte "J"	Dull "K"
1	9	4	TM	69.4	9	17	25
2	7	6.7	TM	67.9	10	18	26
3	5	9.3	TM	66.8	11	19	27
4	3	12	TM	65.3	12	20	28
5	5.5	6	TM	68.7	13	21	29
6	6.5	10	TM	66.1	14	22	30
7	9	4	HE	67.6	15	23	31
8	3	12	HE	62.4	16	24	32

PaperCon²⁻⁵20

Building Leadership Excellence

atlanta ga

FTIR in ATR Mode – Detection of Increasing Starch Content in Top Coat Layer

Topcoat "l" - Gloss

- 70:30 Fine CaCO₃/HG Clay
- TM starch in precoat
- As precoat starch increases, more starch detected in top layer

Topcoat "J" – Matte

- 70:15:15 Fine CaCO₃/HG Clay/Coarse CaCO₃
- TM starch in precoat
- Increasing starch detection in top layer as precoat starch increases

PaperCon

Talent, Technology and Transformation

Quantification of the Starch Amount in Top Coat

Building Leadership Excellence

- 1st Order terms: precoat starch level, precoat starch type, and topcoat formulation
- Interaction terms: precoat starch type with precoat starch level and precoat starch level with top coat formula
- Increasing precoat starch level drives higher detection in the topcoat
- TM starch shows ~ 2X more migration than the HE starch

Talent, Technology and Transformation

Calibration Standard – TM Starch

Parts TM Starch Versus Starch/CaCO3 Intensity Ratio for Three Topcoat Systems

	Coat	ing		Run #			
latex	starch	starch	SC	Gloss "I"	Matte "J"	Dull "K"	
10.5	0		67.5	C1	C7	C13	
9	3	TM	66.0	C2	C8	C14	
7.5	6	TM	64.5	C3	C9	C15	
6	9	TM	63.0	C4	C10	C16	
9	3	HE	66.0	C5	C11	C17	
7.5	6	HE	64.5	C6	C12	C18	

Calibration results utilized to calculate the % starch migrating into topcoat for each topcoat condition.

PaperCon

Building Leadership Excellence

atlanta aa

Talent, Technology and Transformation

Calculation Results

% of Precoat Starch Migrating from Precoat Into Top Layer for Three Topcoat Systems

Talent, Technology and Transformation

Print Mottle – Full Tone

Building Leadership Excellence

atlanta aa

- 1st Order terms: precoat starch level and precoat starch type
- 2nd Order terms: precoat starch level
- Increasing precoat starch level results in more print mottle
- TM starch more prone to mottle than HE starch
- These observations are consistent with starch migration results

PaperCon

Talent, Technology and Transformation

Print Mottle – Full Tone

Building Leadership Excellence 9 10 11 12 Top Coat "" \rightarrow \rightarrow Increasing TM Starch \rightarrow \rightarrow Top Coat "၂" 17 18 19 20

Building Leadership Excellence

atlanta ga

Ink Mileage (amount of ink required to reach target ink density)

Lower value = higher ink mileage

- 1st Order terms: precoat starch level, precoat total binder level, and top coat formula
- 2nd Order terms: precoat starch level
- Increasing precoat starch level while reducing latex level results in ~ 17% poorer ink mileage
- Increasing total binder improved ink mileage
- Higher clay topcoat "I" gave better ink mileage
- No significant difference between starch types

PaperCon

Talent, Technology and Transformation

```
29
```

Effect of Supercalendering on Strength

Higher value = higher pick strength

- 1st Order terms: precoat starch level precoat total binder level, and calendering treatment
- Supercalendering treatment increased dry pick strength
- Increasing precoat total binder improved dry pick strength.
- Increasing precoat starch level while reducing latex level results in lower dry pick strength → Part 1
- No significant difference between starch types

Talent, Technology and Transformation

30

Building Leadership Excellence

Part 3 - Conclusions

- Confirmed similar migration behavior with TM and HE corn starch as w/DP starch used in part 1.
- As starch increased in precoat, more starch was detected in topcoat.
- % of starch migrating into topcoat stayed constant throughout precoat starch dosage range.
 - TM starch: 45-60% of precoat starch migrated into topcoat w/fine pigments and 26-34% migrated into topcoat w/coarse pigments.
 - HE starch: 17-25% of precoat starch migrated into topcoat w/fine pigments and 0-11% migrated into topcoat w/coarse pigments.
- For moderate to high levels of precoat starch, final quality was negatively affected:
 - All grades: Increased print mottle, slower ink setting, and more ink required to hit target density
 - Glossy: Lower dry pick strength induced by calendering process
- Multi-Layer systems must be optimized based on final properties, not individual layer results.

Building Leadership Excellence

PaperCo

Acknowledgements

Building Leadership Excellence

- Dow Center of Excellence pilot coater staffs in:
 - Samstagern, Switzerland
 - Midland, Michigan, USA.
- The support of the paper lab technicians
 - North American Paper Expertise Center, Midland, Michigan, USA
 - European Paper Expertise Center, Horgen, Switzerland
- Support from both companies
 - Styron Division The Dow Chemical Company
 - Burgo Group Ardennes Mill, Virton, Belgium

Building Leadership Excellence

Thank you for your attention

Talent, Technology and Transformation

