Fiber and Chemical Division
The Practicalities of Converting to DP Technology
presented by Eric Wiley
Dissolving Pulp Cooking Technology Update

Current Situation

- Existing production has been predominantly sulfite based, with recent trend of sulfate pulp expansions replacing mill shutdowns and conversions to paper pulp.

- Worldwide consumption growth expected to remain steady at 2 – 3% per year (~130,000 t/a) until 2025, with emphasis in China and rest of Asia.

- Currently there are no continuous cooking references for dissolving pulp operating.

- Possible synergies with hemi-cellulose based products through pre-hydrolysis lead to potential economic benefits.

- Rest of the Fiberline (washing, screening, bleaching) can be done with existing well proven technology.
Dissolving Pulp Cooking Technology Update

Global Fiber Production

<table>
<thead>
<tr>
<th>Fiber Type</th>
<th>Annual Production Tons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil Based Synthetic Fiber</td>
<td>40,000,000</td>
</tr>
<tr>
<td>Cotton</td>
<td>25,000,000</td>
</tr>
<tr>
<td>Viscose Fiber</td>
<td>4,000,000</td>
</tr>
<tr>
<td>Wool and other Animal Fiber</td>
<td>1,000,000</td>
</tr>
<tr>
<td>Total Fiber</td>
<td>70,000,000</td>
</tr>
</tbody>
</table>

2008 Data from CIRFS

Viscose fiber is the key alternate fiber for replacement of lost cotton production
Dissolving Pulp Cooking Technology Update
Mill Design Considerations

For a Pre-Hydrolysis Kraft Pulp Mill

- **Fiberline**
 - Hydrolysate (evaps or external usage)
 - α cellulose content, 92…96 (adjustable)
 - Viscosity (adjustable, may need O3 in bleaching)
 - Metals Management both Fe$^{++}$ and Mn$^{++}$ can cause S (Sulfur) to precipitate and cause problems during the dissolving process and in the spinners.
 - Segregation of sewers required due to acidic hydrolysate spills and resulting H2S risk
 - Transition Pulp, Storage Management

- **Evaporation**
 - Higher than kraft residual alkali (4…8 vs 8-10..15..22 g/l) requires special consideration for process design -> Possibility for extremely high NaOH concentrations in the 1st effect requires all-Duplex construction (High residual if Cold Caustic Extraction is used.)
 - Hydrolysate mixing and neutralization prior to mixing with black liquor to avoid lignin precipitation. In any case fouling behavior worse than kraft
Dissolving Pulp Cooking Technology Update

Mill Design Considerations

For a Pre-Hydrolysis Kraft Pulp Mill

- **Pulp Drying Plant**
 - Improved screening/cleaning system as any dirt or any particles which do not dissolve to viscose dope are a problem.
 - Washing module for better cleaning of pulp and pH control
 - Winder and roll packing option depending on end user request

- **Woodyard**
 - High pulp cleanliness requirements requires effective bark removal
 - Chip dimensions, thinner and shorter chips, equal size distribution in order to have uniform cooking
 - Chips from logs meet well the quality requirements
 - Market chips needs good screening and washing

- **Water & Effluent Treatment Plants**
 - Increase in Demineralized Water Demand
 - Increased Effluent Volume
Dissolving Pulp Cooking Technology Update

Paper Grade Kraft Pulp Fiberline
Pre-hydrolysis kraft (PHK) cooking ensures high alpha cellulose content.
 - Alpha cellulose content is adjustable (P-factor)
 - α cellulose content easily > 92

Oxygen stage
 - increases α cellulose content
 - decreases environmental load of bleaching and decreases chemical costs

Effective washing ensures low COD content to bleaching
 - lower COD effluent amount
 - lower chemical consumption
Dissolving Pulp Cooking Technology Update

Key Bleaching Parameters

- Effective screening reduces impurities amount without fiber losses and no knots to the cooking system
- Bleaching D0 – Eo(p)-D1-P1
 - Final brightness ≥ 90 ISO
 - Acidic stages D_0 and D_1 effective metal removal.
 - **wash water metal free**
 - α-cellulose adjusting in EOP stage – hot alkali
 - final P-stage lowers brightness reversion
 - Oxygen and EOP stage lowers extractives amount,
- Viscose control: cooking, A-stage and alkaline stages (O_2 and EOP)
 - Ozone is another good option for viscosity control
Dissolving Pulp Cooking Technology Update

Dissolving Grade Kraft Pulp Bleach Plant with Ozone

Total Mill Effluent can increase due to no reuse of White Water in the Bleach Plant ~ 7m³/ADMT
Dissolving Pulp Cooking Technology Update

Auto-Hydrolysis of Wood

Moisture + Temperature (155 – 170 C) + Time (45 – 120 minutes)

Cellulose, lignin and some remaining hemicellulose still in Chip Form

+ Sugar Fragments from hemicelluloses as: monomers and oligomers

+ Acetic Acid

+ Smaller amounts of: levulinic, syringic, formic and aldobiuronic acids

+ Acid Lignin fragments

+ Gases (CO, CO2…..)

End pH in the range of 3.3 – 3.7
Dissolving Pulp Cooking Technology Update
Dissolving Grade Kraft Pulp Fiberline Kappa Profile

- S: 15 – 18
 H: 8 - 10
 Down Flow Lo-Solids® Cooking

- S: 7 – 9
 H: 5
 Brownstock Washing

- Oxygen Delignification

- Deknotting & Screening

- S: 5-7
 H: < 5
 ECF bleaching

- Demin Water
 8 m³/ADMT
Dissolving Pulp Cooking Technology Update

Previous Experience

- Most recent continuous cooking reference, Varkaus Finland, was a conventional chip feeding system followed by a hydraulic pre-hydrolysis vessel and vapor phase continuous digester.

- Results publicly reported by the Varkaus mill show the dissolving pulp made from pre-hydrolysis birch did achieve predicted laboratory results.

Source: TAPPI (1981)

PREHYDROLYSIS BIRCH PULPS

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Laboratory Pulp</th>
<th>Mill Run 22.2 - 4.3.1981</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha Cellulose</td>
<td>91</td>
<td>91,5</td>
<td>CCAT, TPPI-3.145</td>
</tr>
<tr>
<td>Alkali Resistance R10</td>
<td>90</td>
<td>91,2</td>
<td>SCAN-C261</td>
</tr>
<tr>
<td>S10 - S18</td>
<td>2</td>
<td>2,5</td>
<td>---</td>
</tr>
<tr>
<td>Alkali Solubility S18</td>
<td>8</td>
<td>8,2</td>
<td>---</td>
</tr>
<tr>
<td>Pentosans</td>
<td>8</td>
<td>7,5</td>
<td>SCAN-C461</td>
</tr>
<tr>
<td>Viscosity, CED</td>
<td>580</td>
<td>600</td>
<td>SCAN-C1582</td>
</tr>
<tr>
<td>Viscosity, CED</td>
<td>20</td>
<td>21</td>
<td>---</td>
</tr>
<tr>
<td>DP</td>
<td>2.8</td>
<td>8.9</td>
<td>---</td>
</tr>
<tr>
<td>Copper Number</td>
<td>G CU/100 G</td>
<td>0.3</td>
<td>N.A.</td>
</tr>
<tr>
<td>Ash Content</td>
<td>0.06</td>
<td>0.07</td>
<td>SCAN-C662, ISO 1785/74</td>
</tr>
<tr>
<td>Silicates and Silica</td>
<td>80</td>
<td>7</td>
<td>SCAN-C862, ISO 779/74</td>
</tr>
<tr>
<td>Ca</td>
<td>60</td>
<td>44</td>
<td>ATOMIC ABSORPTION</td>
</tr>
<tr>
<td>Mg</td>
<td>15</td>
<td>13</td>
<td>---</td>
</tr>
<tr>
<td>Fe</td>
<td>10</td>
<td>0</td>
<td>---</td>
</tr>
<tr>
<td>Mn</td>
<td>0.2</td>
<td>0.3</td>
<td>---</td>
</tr>
<tr>
<td>Co</td>
<td><0.1</td>
<td>0</td>
<td>---</td>
</tr>
<tr>
<td>Dichloromethane Extract</td>
<td>0.07</td>
<td>0.10</td>
<td>SCAN-C782</td>
</tr>
<tr>
<td>Brightness, ISO</td>
<td>91</td>
<td>91</td>
<td>ISO 3688/77</td>
</tr>
</tbody>
</table>
Dissolving Pulp Cooking Technology Update
Upgrade Projects Decided / Announced

Decided:
- 200 kt/a Sun Paper, Yanzhou Continuous Conversion
- 300 kt/a CONFIDENTIAL Continuous New
- 170 kt/a Sodra, Morrum Batch Upgrade
- 300 kt/a Tiger Forest, HuaiHua Batch Conversion
- 600 kt/a Chenming, Zhanjiang Continuous Conv. (Delayed)
- 110 kt/a Fujian, Qingshan Batch Upgrade
- 200 kt/a Fortress, Thurso Batch Upgrade
- 100 kt/a CONFIDENTIAL Continuous Conversion
- 220 kt/a Sappi Batch

Announced / Proposed:
- 260 kt/a Chitianhua
- 200 kt/a Mercer (delayed)
- 200 kt/a Lee&Man
- ---- kt/a Prince Albert Pulp Inc. (APP)

+ MANY more discussions
Dissolving Pulp Cooking Technology Update

Predominate Cooking Technology Today in NA
Dissolving Pulp Cooking Technology Update

Predominate Cooking Technology Today in NA
Dissolving Pulp Cooking Technology Update

State of the Art Paper Grade System
Dissolving Pulp Cooking Technology Update

Dissolving Pulp Configuration
Dissolving Pulp Cooking Technology Update

Predominate Cooking Technology Today in NA
Dissolving Pulp Cooking Technology Update

Cooking System Upgrades for Retrofit to DP Operation

- Proper Pre-Steaming System – Chip Plug Flow > 20 minutes
- Stable Chip Feed – 25% more chips due to low yield
- Feed Line Materials of Construction 316L SS and 2205 Duplex – low pH
- Pre Hydrolysis Reactor Vessel, 100 min. – Not an IV
- Digester Vessel Top Replacement – 2205 Duplex and Vapor Phase Operation
- Heat Recovery System Modified to generate Clean System
- Knots Removed From the System not Back to the Chip Bin
Dissolving Pulp Cooking Technology Update
Advanced Dissolving Pulp Configuration
Dissolving Pulp Cooking Technology Update

Conclusion

- Pre-hydrolysis kraft process has been existing > 60 years (Konigsberg, Germany)

- Previous technology selection did not allow for robust process control
 - Single vessel technology with major pH change internal to the vessel
 - Hydraulic vessel technology sensitive to feed volume variations
 - Complicated pre-treatment systems with large feed volume variations

- Experiences developed during the last 15 years have made this process attractive
 - Atmospheric steaming technology with precise feed volume control
 - Chip pumping technology with stable feed volume transfer
 - Vapor phase vessel technology insensitive to feeding variations
 - Clean steam heat recovery
 - Enhanced instrumentation and process control strategies within and outside DCS system
Dissolving Pulp Cooking Technology Update

Upgrade Projects Decided / Announced

<table>
<thead>
<tr>
<th>Decision</th>
<th>Amount</th>
<th>Company, Location</th>
<th>Conversion Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decided</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ 200 kt/a</td>
<td>Sun Paper, Yanzhou</td>
<td>Continuous Conversion</td>
<td></td>
</tr>
<tr>
<td>▪ 300 kt/a</td>
<td>CONFIDENTIAL</td>
<td>Continuous New</td>
<td></td>
</tr>
<tr>
<td>▪ 170 kt/a</td>
<td>Sodra, Morrum</td>
<td>Batch Upgrade</td>
<td></td>
</tr>
<tr>
<td>▪ 300 kt/a</td>
<td>Tiger Forest, HuaiHua</td>
<td>Batch Conversion</td>
<td></td>
</tr>
<tr>
<td>▪ 600 kt/a</td>
<td>Chenming, Zhanjiang</td>
<td>Continuous Conv. (Delayed)</td>
<td></td>
</tr>
<tr>
<td>▪ 110 kt/a</td>
<td>Fujian, Qingshan</td>
<td>Batch Upgrade</td>
<td></td>
</tr>
<tr>
<td>▪ 200 kt/a</td>
<td>Fortress, Thurso</td>
<td>Batch Upgrade</td>
<td></td>
</tr>
<tr>
<td>▪ 100 kt/a</td>
<td>CONFIDENTIAL</td>
<td>Continuous Conversion</td>
<td></td>
</tr>
<tr>
<td>▪ ---- kt/a</td>
<td>Sappi</td>
<td>Batch new</td>
<td></td>
</tr>
</tbody>
</table>
Fiber and Chemical Division
Thank You for Your Attention