Factors Influencing the Surface Strength of Coated Papers

Dan Varney – Omya Inc.

Peter Dahlvik, Guillermo Bluvol, Karl-Heinz Kagerer, and Manfred Arnold
Applied Technology Service; Business Unit Paper; Omya International AG
CH-4665 Oftringen
Objectives

- To evaluate the effect of different coating color parameters on the surface strength of double coated papers in sheet-fed offset (SFO) printing

- To correlate lab test data with observed edge picking during commercial SFO printing trials
Background

- Latex binder is considered one of the most expensive coating components
- Continuous fine tuning of the binder level is important to cost reduction efforts – requires total systems approach
- One opportunity is to take advantage of the lower binder demand and higher solids potential of GCC
- However, the high tack inks used in SFO printing demand adequate surface strength
- Thus, a balancing act exists between optimizing coating costs and maintaining adequate coating surface strength
What is Edge Picking?

- Occurs in SFO where high-tack inks are used
- Coating is pulled out at the edge between printed and non-printed areas
- Adversely impacts print quality and leads to more frequent washing
- Excessive edge picking can damage the rubber blankets
- Thus, adequate surface strength is very important
Theoretical Considerations

- Tack development of inks through press influenced by ink setting characteristics of coated surface

- Ink setting impacted by pigments and latex
 - Fine pigments create many small pores, leading to
 - Higher capillary pressure and faster ink setting
 - Latex impact via
 - Chemistry of polymer
 - Effect on pore structure of coating layer

- Choice of pigments and binders (type and amount) will greatly affect ink/coating interaction and, thus, surface strength
Specially Designed Printing Method

- Used redesigned printing plate and higher tack inks to exacerbate (enhance) edge picking.

- This method also involved evaluating edge picking by
 - Visual examination of prints
 - Assessment of rubber blankets
 - Ranking edge picking between 0 (worst) and 100 (best)
Redesigned Print Test Form

- Short bars in 6 colors
- 6th unit: blue
- Short bars in 5 colors
- Headlines
- Different screens in black
- 1st unit: open area on rubber blanket
Evaluated Parameters

Pilot coater

- Solids content of coating color
- Pigment type
 GCC vs. high glossing clay
- Pigment fineness
 GCCs
- Pigment psd
 GCC: NPSD vs. BPSD
- Latex level
 high strength SB
- Calendering

Sheetfed offset press

- Man Roland R706 Press
- Color sequence – KCMYCGBlue
- Speed – 8000 iph
- High tack – 9.5 to 10.8
- High tack – 1st four units
- Standard tack – 7.5 to 10.0
- Standard tack – last 2 units
- Varnish unit – pressure only
Pilot Coater Trial Program

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCC 95 (80 % < 1 μm)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay (high glossing)</td>
<td></td>
</tr>
<tr>
<td>NPSD GCC (75 % < 1 μm)</td>
<td></td>
</tr>
<tr>
<td>GCC 60 (60 % < 2 μm)</td>
<td></td>
</tr>
<tr>
<td>GCC 90 (90 % < 2 μm)</td>
<td></td>
</tr>
<tr>
<td>Latex SBR</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>Synthetic thickener</td>
<td>0.10</td>
<td>0.15</td>
<td>0.20</td>
<td>0.10</td>
<td>0.15</td>
<td>0.20</td>
<td>0.25</td>
<td>0.15</td>
<td>0.30</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Solids content</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td></td>
</tr>
</tbody>
</table>

- Base paper: blade precoated 78 gsm
- Precoat – 100 GCC + starch/latex
- Topcoat viscosity – 1000 mPas
- Jet application, stiff blade 12 gsm per side of topcoat
- Supered to 75 gloss target
Lab Paper Testing

- Ink set-off IGT – optical density – in Switzerland
- Ink set-off RI Test – visual assessment – in Korea
- Paper and Ink Stability Test NPA in US
- Dry and wet pick Prüfbau in Switzerland and US
- Print gloss Prüfbau in Switzerland and US
- Hg intrusion porosimetry & paper opticals Switzerland
Ranking According to the Degree of Edge Picking

Press adjusted so that reference was about 50 on the scale

Degree of edge picking (0 = worst / 100 = best)
P&I Slopes

The lower the better

... % Solids

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>2</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>3</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>4</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>5</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>6</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>7</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>8</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>9</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>10</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>11</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
</tbody>
</table>

7.5 % Latex

100 parts GCC 95

5 % Latex

100 parts GCC 95

50/50 Clay GCC 95

7.5 % Latex

100 Clay high glossing

7.5 % Latex

100 GCC NSPD

7.5 % Latex

100 GCC 60

7.5 % Latex

100 GCC 90
P&I Passes to Failure

The higher the better

<table>
<thead>
<tr>
<th>Sample</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>7.5 %</td>
<td></td>
</tr>
<tr>
<td>Latex</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 parts GCC 95</td>
</tr>
<tr>
<td>5 %</td>
<td></td>
</tr>
<tr>
<td>Latex</td>
<td></td>
</tr>
<tr>
<td>50/50</td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td></td>
</tr>
<tr>
<td>GCC</td>
<td></td>
</tr>
<tr>
<td>NSPD</td>
<td></td>
</tr>
<tr>
<td>high</td>
<td></td>
</tr>
<tr>
<td>glossing</td>
<td></td>
</tr>
<tr>
<td>7.5 %</td>
<td></td>
</tr>
<tr>
<td>Latex</td>
<td></td>
</tr>
</tbody>
</table>
Print Gloss
commercial printed papers

Lab print gloss and paper gloss results followed the same trend

% (FS/WS; 75° Tappi)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>2</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>3</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>4</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>5</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>6</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>7</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>8</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>9</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>10</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>11</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>71</td>
<td>68</td>
<td>65</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
</tbody>
</table>
RI Test Ink Setting vs. Edge Picking

Ink setting (6 = fastest / 0 = slowest)

Edge pick print press (100 = best / 0 = worst)

$R^2 = 0.8091$
IGT Ink Setting vs. Edge Picking

![Graph showing the relationship between Optical density and Edge pick print press. The graph has a linear trend line with R² = 0.8068.](image)

Edge pick print press (100 = best / 0 = worst)
P&I Ink Tack Slope vs. Edge Picking

The lower the better

Passes to fail had a similarly good correlation ($R^2 = 0.7733$)

$R^2 = 0.7414$

Edge pick print press (100 = best / 0 = worst)
Wet Pick vs. Edge Picking

- **m/s** (the higher the better)

Dry pick results had poor correlation as well ($R^2 = 0.4748$)

$R^2 = 0.4574$

Edge pick print press (100 = best / 0 = worst)
Uncalendered results showed slightly larger pore size.
Conclusions (I)

- Specially designed commercial SFO printing method provided differentiation regarding edge picking.

- Good correlation found between degree of edge picking and lab ink setting/tack measurements. Thus, quantifying ink/coating interaction as a function of time best "lab scale simulation" of surface strength.

- Hg intrusion porosimetry data indicated that coating pore structure mainly depends on pigment fineness.

- Calendering offered an improvement in surface strength.
Conclusions (II)

- Ink setting and ink tack results indicate that pore structure of coating layer is crucial to degree of pick strength.

- Slower ink setting favors higher surface strength via:
 - Pigments – GCC vs. clay and coarse vs. fine
 - Higher solids
 - Higher latex amount

- Lower surface strength of clay coatings due to:
 - Faster ink setting (from finer pore size)
 - Higher specific surface area (higher binder demand)
 - Hydrophobic nature of clay
Conclusions (III)

- NPSD GCC had better surface strength than expected

- Choice of pigments along with maximizing coating solids
 - Allowed for reduction in binder level w/o compromising surface strength
 - Improved sheet and print gloss

- Future work to assess further the impact of coarser clays and coating PCC
Thank You for Your Attention!