

Energy Management and Optimization

Keith Masters, ABB

PaperCon 2011 Page 1186

Presentation Topics

- Importance of Energy Management
- Objectives of Energy Management
- System Functions
- Case History Examples
- Wrap-up and Questions

Importance of Energy Management

World energy consumption (Metric Tonne) by fuel type

Source: BP - Statistical Review of World Energy 2009 Focus in sustainable manufacturing

 Energy is a major production cost item in many process industries ⁽¹⁾

- Pulp & paper approximately 10% of production cost
- Energy savings up from 10% to 25% can be reached by taking various actions ⁽²⁾

(1) Based on geographical area

(2) Source: ARC Best Practices for Energy Management report, Jan. 2009

Benchmarks and Best Practices

Table 4.2 U.S. P&P Energy Distribution								
	Electric		Steam		Direct Fuel			
	TBtu	%	TBtu	%	TBtu	%		
Pulp Manufacture	158.6	40.3	449.3	41.5	100.2	76.2		
Paper Manufacture	206.9	52.6	537.8	49.7	31.3	23.8		
Utilities, excluding Powerhouse	27.8	7.1	94.3	8.7	0.0	0		
Total Manufacturing	393.3 (24.5%)	100.0	1,081.4 (67.3%)	100.0	131.4 (8.2%)	100.0		
Grand Total	1,606.1 (100.0%)							

Best Available Technology (BAT)

PaperCon 201

Energy Management Objectives

Energy Price Optimization

- Focus
 - Manage variable energy prices and optional supply resources
 - Energy demand planning and optimization
 - Energy supply planning and optimization
- Benefits
 - Purchase/produce required energy at the lowest cost
 - Optimize the use of alternative energy sources and energy supply contracts
- Performance Indicators
 - Average price of consumed energy
 - Average price of sold energy
 - Total net cost of energy / produced unit
 - Accuracy of consumption plans

Energy Usage Optimization

- Focus
 - Improve energy efficiency and reduce consumption
 - Reduce carbon footprint
 - Equipment that consumes a lot of energy
- Benefits
 - Maintain the most energy efficient operating mode in varying process conditions
 - Reduce energy consumption while maintaining or improving the production rate
- Performance Indicators
 - Actual energy consumption / expected target consumption
 - Energy consumption / produced unit
 - Energy efficiency / Energy Intensity Index and carbon footprint

System Functions

A software package that helps you:

- Purchase energy at the lowest available cost by . . .
- Predicting and planning energy consumption & . . .
- Optimizing energy consumption and supply & . . .
- Monitoring and reporting energy usage and efficiency

TAPPI

PaperCon 20

2 to 5% cost savings are achievable using energy procurement, dispatching and planning capabilities available with

Energy Management

38

Planning and Scheduling

What?

Predict load schedule based on production plan

Load plans are calculated for

- Process areas
- Total mill
- Corporation
- Different utilities (power, steam, gas, ...)

Presentation of load plans

- Process area electric & thermal
- Mill electric & thermal
- Corporate electric (& thermal)

How?

Select power resources to match load schedule at minimum cost

Power resources

- Own generation
- Purchase agreements
- Electricity from spot market

Solution methods

- Economic Flow Network
- MIP Optimization
- Alternative: Load scheduling to utilize inexpensive off-peak power

How? Optimizing Electricity Procurement and Consumption

TAPPI

- Optimize procurement and generation based on consumption plans
- Optimize consumption to use off-peak hours if intermediate storage capacity is available
- Minimize startup and operating costs
- Compare different scenarios, and adjust the plan manually
- Provides decision support for users or automatically sends set points to Advanced Process Control or DCS
- 2 to 5% additional cost savings are possible with optimization

How? Energy Efficiency Monitoring

TAPPI

- user configurable visual tools for monitoring, targeting and analyzing
- At a glance view of relevant KPI's
- Clear indication of savings potential and lost opportunity
- Drill down to details
- Savings of 10%-15% savings can be achieved simply by making energy usage and savings potential visible in real-time

Example: Benefits of Accurate Planning & Monitoring

Customer Case 1 Pulp & Paper Corporate Energy Management

- Energy Management System
 - Corporate Central Control Room
 - 10 Mills
- Functions
 - Energy load planning
 - Energy optimization
 - Energy monitoring, reporting and invoicing
- Total electricity bill 700 M\$
- Own energy production
 80 %
- Total annual savings
 - Savings in electricity price 14 M\$
 - Savings in electricity consumption 35 M\$
 - CO2 reduction 175,000 tons

PaperCon 20

Customer Case 2 Building Energy Monitoring and Reporting

- Multi site building energy monitoring and reporting system using Energy Management System
 - Load planning, energy monitoring and reporting
 - Energy benchmarking

•	Total electricity bill	10 M\$
•	Own energy production	0 %
•	Total annual savings	
	 Savings in electricity price 	0 k\$
	 Savings in electricity consumption 	400 k\$
	- CO2 reduction	2,000 tons

PaperCon 2011 Page 1202