Energy Management and Optimization

Keith Masters, ABB
Presentation Topics

- Importance of Energy Management
- Objectives of Energy Management
- System Functions
- Case History Examples
- Wrap-up and Questions
Importance of Energy Management

- Focus in sustainable manufacturing
- Energy is a major production cost item in many process industries (1)
 - Pulp & paper approximately 10% of production cost
 - Energy savings up from 10% to 25% can be reached by taking various actions (2)

World energy consumption (Metric Tonne) by fuel type
Source: BP - Statistical Review of World Energy 2009

(1) Based on geographical area
Benchmarks and Best Practices

Best Available Technology (BAT)

Table 4.2
U.S. P&P Energy Distribution

<table>
<thead>
<tr>
<th></th>
<th>Electric</th>
<th>Steam</th>
<th>Direct Fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TBTu</td>
<td>%</td>
<td>TBTu</td>
</tr>
<tr>
<td>Pulp Manufacture</td>
<td>158.6</td>
<td>40.3</td>
<td>449.3</td>
</tr>
<tr>
<td>Paper Manufacture</td>
<td>200.9</td>
<td>52.0</td>
<td>537.8</td>
</tr>
<tr>
<td>Utilities, excluding</td>
<td>27.8</td>
<td>7.1</td>
<td>94.3</td>
</tr>
<tr>
<td>Powerhouse</td>
<td></td>
<td></td>
<td>8.7</td>
</tr>
<tr>
<td>Total Manufacturing</td>
<td>383.3</td>
<td>100.0</td>
<td>1,081.4</td>
</tr>
<tr>
<td></td>
<td>131.4</td>
<td>8.2%</td>
<td>100.0</td>
</tr>
<tr>
<td>Grand Total</td>
<td>1,666.1</td>
<td>(100.0%)</td>
<td></td>
</tr>
</tbody>
</table>

Source: Pulp and Paper Industry Energy Bandwidth Study

Prepared by

Institute of Paper Science and Technology (IPST)
and
Institute of Paper Science and Technology (IPST) at
Georgia Institute of Technology

PaperCon 2011
Energy Management Objectives

Reduce
- Price you pay
 - $ / MWh
- Average Unit Price
 - Energy consumption

Decrease
- Energy Consumption
 - MWh / Ton
- Total Energy Consumed
 - Production output

Increase
- Energy Cost Effectiveness
 - (eE) Tons / e$
- Production Units
 - Unit Energy Cost $

Minimize energy costs

\[eE \text{ is a KPI = Tons per energy dollar} \]
Energy Price Optimization

• Focus
 - Manage variable energy prices and optional supply resources
 - Energy demand planning and optimization
 - Energy supply planning and optimization

• Benefits
 - Purchase/produce required energy at the lowest cost
 - Optimize the use of alternative energy sources and energy supply contracts

• Performance Indicators
 - Average price of consumed energy
 - Average price of sold energy
 - Total net cost of energy / produced unit
 - Accuracy of consumption plans
Energy Usage Optimization

• Focus
 - Improve energy efficiency and reduce consumption
 - Reduce carbon footprint
 - Equipment that consumes a lot of energy

• Benefits
 - Maintain the most energy efficient operating mode in varying process conditions
 - Reduce energy consumption while maintaining or improving the production rate

• Performance Indicators
 - Actual energy consumption / expected target consumption
 - Energy consumption / produced unit
 - Energy efficiency / Energy Intensity Index and carbon footprint
System Functions

A **software package** that helps you:

- Purchase energy at the lowest available cost by . . .
- Predicting and planning energy consumption & . . .
- Optimizing energy consumption and supply & . . .
- Monitoring and reporting energy usage and efficiency

2 to 5% cost savings are achievable using energy procurement, dispatching and planning capabilities available with **Energy Management**
Planning and Scheduling

Benefits:
Lower price on consumed electricity, due to
- Providing load schedules to power suppliers
- Employing cost optimal power resources
- Scheduling consumption to off-peak times
What?
Predict load schedule based on production plan

Load plans are calculated for
- Process areas
- Total mill
- Corporation
- Different utilities (power, steam, gas, …)

Presentation of load plans
- Process area electric & thermal
- Mill electric & thermal
- Corporate electric (& thermal)
How?
Select power resources to match load schedule at minimum cost

- **Power resources**
 - Own generation
 - Purchase agreements
 - Electricity from spot market

- **Solution methods**
 - Economic Flow Network
 - MIP Optimization

- **Alternative**: Load scheduling to utilize inexpensive off-peak power
How?
Optimizing Electricity Procurement and Consumption

- Optimize procurement and generation based on consumption plans
- Optimize consumption to use off-peak hours if intermediate storage capacity is available
- Minimize startup and operating costs
- Compare different scenarios, and adjust the plan manually
- Provides decision support for users or automatically sends set points to Advanced Process Control or DCS
- 2 to 5% additional cost savings are possible with optimization
How?
Energy Efficiency Monitoring

- user configurable visual tools for monitoring, targeting and analyzing
- At a glance view of relevant KPI’s
- Clear indication of savings potential and lost opportunity
- Drill down to details
- Savings of 10%-15% savings can be achieved simply by making energy usage and savings potential visible in real-time
Example: Benefits of Accurate Planning & Monitoring

Case 1
Power [MW]

Surplus power to the grid operator: 30$/MWh

Case 2
Power [MW]

Deficit power from the grid operator: 50$/MWh

Ideal Situation
Power [MW]

Surplus power to the grid operator: 30$/MWh

Annual savings
~$800,000
= 2.5% of total electricity costs

Day-ahead
100 MW
40$/MWh

Average price:
41$/MWh

Average price:
40.95$/MWh

Average price:
40.01$/MWh

Measured consumption: 95 MW

Measured consumption: 99 MW

PaperCon 2011 Page 1199
Customer Case 1
Pulp & Paper Corporate Energy Management

• Energy Management System
 - Corporate Central Control Room
 - 10 Mills
• Functions
 - Energy load planning
 - Energy optimization
 - Energy monitoring, reporting and invoicing
• Total electricity bill 700 M$
• Own energy production 80 %
• Total annual savings
 - Savings in electricity price 14 M$
 - Savings in electricity consumption 35 M$
 - CO2 reduction 175,000 tons
Customer Case 2
Building Energy Monitoring and Reporting

- Multi site building energy monitoring and reporting system using Energy Management System
 - Load planning, energy monitoring and reporting
 - Energy benchmarking
- Total electricity bill 10 M$
- Own energy production 0 %
- Total annual savings
 - Savings in electricity price 0 k$
 - Savings in electricity consumption 400 k$
 - CO2 reduction 2,000 tons
Questions?