Nip Dewatering
A Press Fabric Perspective

May 4, 2011
PaperCon 2011

John Neun – Albany International
Outline

- Introduction
 - Press Dewatering Principles
 - Nip Dewatering
- The Role of the Fabric in Nip Dewatering
- Fabric Design
 - Parameters
 - Tools
Nip Width and Pressure

\[P_{\text{NIP}} = P_{\text{mechanical}} + P_{\text{hydraulic}} \]

- \(P_{\text{mechanical}} \)
 - Press load
 - Nip width (roll covers, felt)
- \(P_{\text{hydraulic}} \)
 - Felt void volume
 - Water content
Press Dewatering: Basic Physics

- Water movement occurs only with pressure differential
- Pressure must be higher in sheet than felt
- If hydraulic pressure exists, saturation must exist
 - There must be a continuum of fluid
- Therefore, to achieve fluid movement:
 - Voids must exist in the felt, OR
 - Voids must exist “beyond” the felt (slots/grooves in roll), OR
 - Water must flow in MD or CD (felt is permeable in every direction), OR
 - The sheet explodes (crushing)
Pressing and Felts

Press fabric function
- Accept water from sheet
- Other stuff (impart finish, convey sheet, transmit power)

Nip dewatering
- Independent flow exits out of the nip
- Water passes through felt out of nip

Pressure and flow depend on
- void volume
- Compressibility
- permeability
Nip Dewatering vs. Uhle Dewatering

- Water is expressed form the sheet into the felt at the press
- Water is given up by the felt
 - At the nip (water volume beyond saturation passes through the felt)
 - Water goes through the felt
 - Permeability is very important: flow resistance
 - Compressibility and void volume determine saturation point
 - At the uhle box (water carried from nip to uhle box)
 - Water enters sheet side of felt and exits from same side
 - Void volume determines capacity of felt
 - Permeability determines air flow → uhle dewatering efficiency

- Nip dewatering benefits
 - Improved press solids (more efficient pressing)
 - Profile improvements (more even pressing)
 - Cleaner felts (better “flushing”)
Felt Water Balance Over Life

- Felt compressibility, permeability, and void volume all change over life
Felt Design Objectives

• Steady State Pressing
 - Achieve some saturation point in the nip early in felt life
 • Enough water to achieve hydraulic pressure
 • Little enough water to avoid crushing
 - Maintain some uhle flow
 • Help clean fabric and prevent filling
 • Control felt water balance
How Much Water?

- Optimal water content for nip dewatering depends on
 - Felt
 - Sheet
 - Belt/Roll venting
 - Nip Load
 - Nip Profile
 - *Is unique to every press*

- Uhle systems can moderate water to the nip
 - Too much → nip rejection, crushing
 - Too little → sub-optimal nip dewatering
Felt Design and Nip Dewatering

• There are three options to enhance nip dewatering with felt design.
 - Balance life and startup performance

1. Reduce permeability and void volume
 - Retard uhle dewatering
 - Enhance nip saturation with minimal void volume
 - Densified conventional styles
 - Usually poor life

2. “Soften” compressibility of felt
 - Maintain permeability \(\rightarrow\) allow through flow
 - Minimize mid-nip void volume \(\rightarrow\) achieve saturation easier
 - Unconventional structures in base to control mid nip performance

3. Maintain permeability and control void volume to reduce saturation volume
 - Conventional web structures to control permeability
 - “Crossless” base structures for void volume and compression control
1. Densified Fabric

- Very dense web
- Reduced perm, reduced void volume
- Decent startup
- Poor life
Enhanced Compression

- Viscoelastic layer in felt
- Good permeability, controlled compressibility
Controlled Void Volume

- Controlled base fabric void volume
- Good compression characteristics
Cleaning

• Why do nip dewatering felts clean better?
• Uhle felts \rightarrow water in and out from same side
• Nip dewatering felts \rightarrow water flows through felt
 - Structure flushed better
Felt Design Summary

- Objectives
 - Optimize pressing efficiency
 - Startup
 - Over felt life
 - Maximize life

- Tools
 - Felt structure
 - Batt
 - Base
 - Other
 - Control
 - Permeability
 - Compressibility
 - Void volume (free and mid nip)
Thank You