Detailed analysis of the dewatering process on a CrescentFormer tissue machine

by Brian Christiansen
Applications Manager

Tissue Forum @ PaperCon 2011

Pulp & Paper
Detailed analysis of the dewatering process

Contents

Background

Trial data collection
 Measuring approach
 Methodology
 Experimental findings

Modeling
 Impact of variables

Conclusions
Detailed analysis of the dewatering process

Background

Starting point
- Crescent former
- Single side dewatering

Papermaker issues
- Water handling
 - Optimized white water tray design
 - Speed up capability
- Dewatering performance of different fabrics
 - Fabric characteristics ≠ dewatering capacity

![Diagram of papermaking process]

- wire
- felt
- paper
Detailed analysis of the dewatering process

Background

Approach

- Literature study
- Selection measurement equipment
- Trial methodology
- Modeling as part of master thesis
Detailed analysis of the dewatering process

Trial data collection

<table>
<thead>
<tr>
<th>What to measure</th>
<th>Dewatering pressure through process</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Forming length</td>
</tr>
</tbody>
</table>

Variables

- wire tension, basis weight, consistency
- speed, furnish, forming fabric design

How to measure

- RadiAnalyzerX (ultra thin pressure sensing)
- Physical measurement
- Strobe & camera
Detailed analysis of the dewatering process

Line measurement
Detailed analysis of the dewatering process

Pressure measurement
Detailed analysis of the dewatering process

Trial data collection

How to measure

RadiAnalyzerX

Physical measurement

Strobe & camera

A B C

![Graph showing pressure vs. forming length]

![Bar chart showing forming length vs. trial number]
Detailed analysis of the dewatering process

Experimental findings

Dewatering pressure

2 wire tension levels

Good correlation with theoretical model

\(p = \frac{T}{r} \)
Detailed analysis of the dewatering process

Experimental findings

Forming length vs. machine speed and wire tension

![Graph showing forming length vs. machine speed and wire tension.]

- **Forming length**
 - Wire tension

![Bar chart showing forming length for different combinations.]

- **Combination #**
 - 1
 - 2
 - 3
 - 4
 - 5

- **Length forming zone [m]**
 - Low
 - High
Detailed analysis of the dewatering process
Experimental findings

Forming length

Fabric comparison
A…triple layer, 500 cfm
B…triple layer, 530 cfm
C…triple layer, 440 cfm
Detailed analysis of the dewatering process
Experimental findings

Forming length

Furnish, wire tension

Speed, basis weight

<table>
<thead>
<tr>
<th>Trial #</th>
<th>Wire tension</th>
<th>V jet [m/min]</th>
<th>v wire [m/min]</th>
<th>BW Y. [g/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Water</td>
</tr>
<tr>
<td>1</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>2</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>3</td>
<td>High</td>
<td>Middle</td>
<td>Middle</td>
<td>Low</td>
</tr>
<tr>
<td>4</td>
<td>Low</td>
<td>Middle</td>
<td>Middle</td>
<td>Low</td>
</tr>
<tr>
<td>5</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>0-11</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Water</td>
</tr>
<tr>
<td>6</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>7</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>8</td>
<td>High</td>
<td>Middle</td>
<td>Middle</td>
<td>High</td>
</tr>
</tbody>
</table>
Detailed analysis of the dewatering process

Modeling

Creation of a dewatering calculation tool based on fundamental physics

Good correlation of measured and calculated values
Detailed analysis of the dewatering process

Model outputs - limits

Consistency

- Graph showing consistency against basis weight and machine speed.
 - Blue line: $c = 0.4\%$
 - Green line: $c = 0.3\%$
 - Red line: $c = 0.2\%$
Detailed analysis of the dewatering process
Model outputs - limits

Wire tension

- T = 9 kN/m
- T = 7.5 kN/m
- T = 6 kN/m
Detailed analysis of the dewatering process

Conclusions

Insight to the crescent dewatering characteristics

Measured dewatering pressure fits conventional theory for roll forming

<table>
<thead>
<tr>
<th>Increased:</th>
<th>required forming length:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire tension</td>
<td>(↓)</td>
</tr>
<tr>
<td>Speed</td>
<td>(↑)</td>
</tr>
<tr>
<td>BW</td>
<td>(↑)</td>
</tr>
<tr>
<td>Freeness</td>
<td>(↓)</td>
</tr>
<tr>
<td>Retention</td>
<td>(↓)</td>
</tr>
<tr>
<td>Consistency for given BW</td>
<td>(↓)</td>
</tr>
</tbody>
</table>
Detailed analysis of the dewatering process

Saveall Optimization
Thank you for your attention