Cost-Saving Strategies in Papermaking Chemistry – Mini-Course Version

By Marty Hubbe and Kasy King

TAPPI PaperCon 2011
May 4, 2011

Today’s Topics

First 90-minute session
 Introduction
 Group exercise: Thinking about cost items
 Different kinds of costs
 Using paper chemicals cost-effectively

Break (30 minutes)

Second 90-minute session
 “Rising retention aid costs” case study
 Key concepts from the textbook
 Discussion of “question card” issues
Costs at “ACME Paper Co.” are too high!

During the next 180 minutes (two conference sessions, with a break in the middle) we will work as a team to change that situation.

Let’s go over the brief list of items that “management” wants us to consider...

“Dear cost-savings task group, please consider…”:

1. Losses (wasted materials, unrecovered broke, etc.)

2. Slow production rate (fixed costs spread out over too few tons)

3. Downtime (length of scheduled downtime, frequency and duration of unscheduled downtime)
“Dear cost-savings task group, please consider…”:

4. Inefficient use of functional additives (higher than necessary costs for sizing, dry strength, wet strength, opacity, retention aids, etc.)

5. Process additives and their control (to reduce the standard deviations of measurable variables)

“Dear cost-savings task group, please consider…”:

6. Reduction in the amount of fiber needed to make a ton of product (including basis weights, filler levels)

7. The amount of energy required to produce a ton of product (moisture out of the press section, vacuum energy, etc.)
A Simple Way to Look at It

Receipts - Costs = Profits

Decrease this item!!
Many kinds of losses hurt us here!!

A Simple Way to Look at It

Receipts \propto Price X

Production rate

X Fraction of uptime

X Fraction saleable product

“If it ain’t broke…”
Let’s review how “ACME” is doing…

Three paper machines / product areas:

PM#1 – Specialty printing paper
50-100% bleached virgin kraft
0-50% de-inked mixed office waste
Hybrid former, size press, etc.
Many short runs (colors, etc.)

Paper Machines 2 & 3

PM#2 – Coated magazine paper
80-100% thermomechanical pulp (TMP)
Gap former, 40-55 lb/3300 ft²
On-machine coated (blade)
Long production runs

PM#3 – Multi-ply board
50-100% old corrugated cont. (OCC)
0-30% other recycled pulp (e.g. MOW)
0-10% bleached virgin kraft
Multi-cylinder (6 plies)
Off-machine coating option
Recent Production Summary

Machine: 1
Grade: Uncoated fine printing
Uptime (%): 79
Saleable (%): 90
Max tons/day: 100
Limiting factor: Dryers
Key issues: Transition time, cost of opticals, sizing costs, variability, deposits

Recent Production Summary

Machine: 2
Grade: Light-weight coated
Uptime (%): 79
Saleable (%): 98
Max tons/day: 100
Limiting factor: Drives
Key issues: Web breaks, picking
Recent Production Summary

Machine: 3
Grade: Paperboard (folding boxes)
Uptime (%): 96
Saleable (%): 95
Max tons/day: 100
Limiting factor: Drainage
Key issues: Strength, coverage

Meet Some of your Team-Mates

- Please form a group with 3-6 people sitting near to you.
- Your assignment is to make a recommendation of at least one issue for the company to focus on in the short term. Report this idea in a 1-minute statement, giving reasons.
Things to Focus on during Group Work

PM#1
Fine printing
50-100% bl. kraft
0-50% DIP MOW
Hybrid; size press
Short runs (colors)
Uptime: 79%
Saleable: 90%
Limit: Drying
Issues: Transition
Time, opticals

PM#2
Light-wt coated
80-100% TMP
Gap former,
40-55 lb/3300 ft2
On-machine ctd
Long runs
Uptime: 79%
Saleable: 98%
Limit: Drives
Breaks, picking

PM#3
Paperboard
50-100% OCC
0-30% MOW, etc.
0-10% bl. kraft
Multi-cylinder
Off-machine coat
Uptime: 96%
Saleable: 95%
Limit: Drainage
Strength, coverage

Materials losses (yield); Low production rate; Downtime;
Inefficient use of functional additives; Process variability;
High costs of materials; Energy costs; Shipping costs

Definition: “Fixed Costs”

Costs that do not depend on the rate of production

Examples:
• Administration
• Property taxes
• Insurance
• Debt

Also called…
“Indirect costs”
Definition: “Direct Costs”

Costs that *DO* depend, at least partly, on the rate of production

But there are two types of direct costs…

- **Variable**
- **Semivariable**

Examples of Direct Costs

Variable
- Manufacturing materials

Semivariable
- Manufacturing labor
Now it’s your turn; please suggest categories for the following items:

<table>
<thead>
<tr>
<th>DIRECT COSTS</th>
<th>INDIRECT (Fixed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Semi-V.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Purchased pulp</th>
<th>Maintenance</th>
<th>Pension fund</th>
<th>Insurance</th>
<th>Water treatment</th>
<th>Social security</th>
<th>Depreciation</th>
</tr>
</thead>
</table>

Now it’s your turn; please suggest categories for the following items:

<table>
<thead>
<tr>
<th>DIRECT COSTS</th>
<th>INDIRECT (Fixed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Semi-V.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemical costs</th>
<th>Energy</th>
<th>Fresh water use</th>
<th>Lease/rentals</th>
<th>Property mortgage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Annual Cash Flow

0% Shut-down Breakeven point "For example" 100% Capacity

Gross return (example)
Total cost

Sales

Fixed
Semi-variable
Variable expenses

It costs money to meet customer requirements!

Receipts - Costs = Profits

Variable costs are driven higher by customer needs for sizing, opacity, color, dry strength, wet strength, etc.

But the market price may be in the “commodity” range, cutting into your profitability.
The Solution: Achieve Specifications at Lower Cost

“That’s easy for YOU to say…”

Depreciation

Linear: An attempt to estimate the loss in value of equipment

Accelerated (double-declining balance, sum-of-years-digits, etc.): Tax systems intended to encourage companies to make capital investments
Depreciation on capital

"Life" of the equipment

TOTAL

Maintenance

Purchase

Time (years)

Cost
Today’s Topics

First 90-minute session
- Introduction
- Group exercise: Thinking about cost items
- Different kinds of costs
 - Using paper chemicals cost-effectively

Break (30 minutes)

Second 90-minute session
- “Rising retention aid costs” case study
- Key concepts from the textbook
- Discussion of “question card” issues

Ways to Reduce Costs of Functional Additives

1. Use functional additive(s) more efficiently and don’t use more than you need.

2. Deal with various interferences to functional additives.

3. Deal with factors that cause the functional additives to decompose.

4. Control your process more precisely.
Reasons Why Sizing Can Be Inefficient

Water-loving nature of the fibers

High surface area of fillers, etc.

Reasons Why Sizing Can Be Inefficient

Breakdown of the size

AKD breaks down too, but not as fast.

ASA hydrolyzate

Surface-active agents

Water-loving

Oil-loving
ASA Hydrolysis vs. pH

ASA Hydrolysis vs. Temperature

Reasons Why Sizing Can Be Inefficient

Sizing agent poorly retained

- Retention aid system needs attention.
- System charge is out of balance.

Reasons Why Opacifying Fillers Can Be Inefficient

- Never got properly dispersed.
- Got agglomerated during storage or use.
More Strategies to Get Opacity at Lower Cost

- High filler levels (Ch. 7 of textbook)
- Maintain “bulk” (lot’s of air spaces)
 - Stiff, bulky fibers, e.g. CTMP
 - Composite-type fillers, e.g. rosettes
- Selecting the fillers to be used
Wet-Strength Cost Saving Strategies

Adjust charge conditions, pH conditions, so that it retains well and cures well.

Retain the resin on the fibers, rather than the fines (thick stock addition).

But add it after the refiners…
Key Cause of Poor Performance of Strength Additives: Cationic Polymer Neutralized by “Trash”

Cationic starch

Polyamidoamine-epichlorohydrin (PAAE)

Use a cheaper “sacrificial” additive, a “trash collector” (high-charge-density cationic)

Additives Used for Charge Control

Alum: $\text{Al}_2(\text{SO}_4)_3 \cdot 14 \, \text{H}_2\text{O}$

PAC: $[\text{AlO}_4\text{Al}_{12}(\text{OH})_4(\text{H}_2\text{O})_{12}]^{7+}$, etc.

Polyamine: $[-\text{N}^+\text{(CH}_3\text{)}_2\text{-CH}_2\text{-COH-CH}_2^-]_n$

PEI: $\text{H}_2\text{N}-(\text{CH}_2\text{CH}_2\text{N})_x-(\text{CH}_2\text{CH}_2\text{NH})_y$ \[\text{CH}_2\text{CH}_2\text{NH}_2 \]

Polyamides, other
Optimize the Charge Demand

Case one: too negative

Strength additive (cationic) \[\rightarrow \] Anionic colloids in pulp

Neutralized: behaves like a filler

Neutralized additive not efficiently retained on fibers

Cellulose surface
Optimize the Charge Demand

Case two: high charge additive used

Anionic colloids in pulp → High-charge cationic treatment → Strength agent added

Think Outside the Box

The size press can be cost-effective for strength, especially surface strength.

But the size press application can be made more effective by internal sizing...
A Little Case Study

Project team asked to reduce cost of size-press application.

Already, the lowest-cost starch is being used, with in-mill “conversion” to reduce viscosity for size press use.

Strength targets being met, but size press “maxed out” in amount applied.

Conventional Wisdom:
Reduce Starch Viscosity

- Runs better at size press
- Possible to apply higher solids solution
- Higher pick-up

But you may be losing money…
Case Study Results

- Enzyme costs reduced (by reduced need to break down the starch molecular mass)
- Starch costs reduced (lower starch solids and less penetration due to higher molecular mass)
- Strength targets met (because of better bonding by higher-mass polymer)
Today’s Topics

First 90-minute session

- Introduction
- Group exercise: Thinking about cost items
- Different kinds of costs
- Using paper chemicals cost-effectively

Break (30 minutes)

Second 90-minute session

- “Rising retention aid costs” case study
- Key concepts from the textbook
- Discussion of “question card” issues

Case Study: “Rising Retention Aid Costs” *

Team goal: Reduce retention aid costs by 30% or more.

1. Study next two figures.
2. Then study a list compiled by the summer intern, who has now returned to their university.
3. Choose the “top one or two” options for your boss to consider first.

* Chapter 5 of Cost-Saving Strategies in Papermaking Chemistry
Time (years before present)

Retention Aid Costs (relative)

Cationic Demand (µeq/L)

Time (years before present)
Things that have Changed

- Speed increases (4 years ago)
- Basis weight decrease (time hard to pin down)
- Increase in brightness requirements (2.5 years ago)
- PCC use (2.5 years ago)
- Peroxide bleaching (2 years ago)
- Fluorescent whitener in the coating color
- Broke content increased about 10%, in relative terms
- Overall increase in the amount of pulp produced
- Cationic demand increased over whole period, apparently
- Fresh water usage reduction (last 13 months)
- No change in retention aid brand, type, or target FPR.

Suggestion

Start by reading through the details of what has changed in the system over the past 5 years.
Today’s Topics

First 90-minute session
- Introduction
- Group exercise: Thinking about cost items
- Different kinds of costs
- Using paper chemicals cost-effectively

Break (30 minutes)

Second 90-minute session
- “Rising retention aid costs” case study
- Key concepts from the textbook
- Discussion of “question card” issues

Objective: Speed up the process!

- Increase revenue.
- Avoid increasing fixed costs (strategies that involve no or minimal capital spending).
- We’ll assume that process efficiency (i.e. “uptime”) remains constant (those issues will be discussed in the subsequent section).
A Simple Way to Look at It

Proceeds - Costs = Profits

Variable (materials, etc.)
Semivariable (labor, etc.)
Fixed (debt, insurance, property taxes, etc.)

Speeding up the process mainly is expected to increase two items:

Receipts - Costs = Profits

Variable (materials, etc.)
Semivariable (labor, etc.)
Fixed (debt, insurance, property taxes, etc.)
Concept of Marginal Costs

“What is the cost of the final 1% of production?

How much more did you earn, compared to if you made 99% of what you did?

Simplifying Assumptions:

Fixed costs, labor, not affected.
Process efficiency not affected.
Variable costs \propto production rate.
When “Faster” Doesn’t Pay

Your paper is being warehoused vs. sold due to low customer demand.
- (Trim costs; maybe run slower.)

Variable costs exceed selling price.
- (Look for ways to cut costs, rather than increase production.)

Variable costs start to increase out of proportion to the production rate.
- (Try to find out why you lose efficiency, cost-effectiveness when running faster.)
Using a paper machine is something like renting a car...

Rental fee \approx Cost charged to you for use of the capital equipment (overhead charges assignable to the manufacturing activity)

Driver \approx labor

Gas \approx materials

\[
\text{Cost of materials used (in receiving)} + \text{Direct labor, including fringes} \times \text{"Use rate" for facilities employed} \times \text{time} = \text{Cost per unit time}
\]

Sims, R., *Precision Manufacturing Costing*, Dekker, 1995, adapted
Refining and high levels of fines can result in slow dewatering.

1. Increased effective surface area \((S)\).

Kozeny-Carman equation for flow rate:

\[
\frac{dQ}{dt} = \frac{1}{K} \frac{(1 - C)^3}{S^2 C^2} \frac{1}{\mu}
\]

where \(C\) is the volume fraction of solids, \(\mu\) is the solution viscosity, and \(K\) is a constant

2. The “choke point” effect – unattached fines blocking of drainage channels in the wet web (to be discussed later)

3. Increased flexibility of fibers, when refined, allows them to conform to each other’s surface in a denser mat, leaving less space for water to flow around them.
Canadian Standard Freeness

1. 1 liter mixed stock, 0.3% solids. Close top lid & stop-cock.

2. Open bottom lid & stop-cock.

3. Measure volume.

Gravity Drainage vs. Polymers

Vacuum Dewatering vs. Polymers

Why did the drainage aids seem “bad” for vacuum dewatering?

M. Hubbe
Dewatering vs. Polymer Use

<table>
<thead>
<tr>
<th>Additive</th>
<th>Consistency on wire (%)</th>
<th>Consistency after couch (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>4.4</td>
<td>16.3</td>
</tr>
<tr>
<td>PEI (0.8%)</td>
<td>2.1</td>
<td>17.6</td>
</tr>
<tr>
<td>PEI (0.8%) + An.PAM (0.1%)</td>
<td>8.8</td>
<td>15.5</td>
</tr>
<tr>
<td>PEI, An.PAM, then dispersed</td>
<td>10.4</td>
<td>20.9</td>
</tr>
</tbody>
</table>

Chemical strategies to accelerate dewatering can have up to 4 parts.

1. Neutralize negatively charged colloidal substances (anionic trash).
 - Alum, PAC, polyamines, PEI, etc.

2. Create positively charged patches for electrostatic attractions.
 - PEI copolymer, poly-DADMAC, polyamines, etc.

3. Bridge with high-mass retention aids.
 - Cationic PAM or dual (high-cationic, then anionic PAM)

4. Use microparticles (see later discussion).
 - Colloidal silica, bentonite, micro-polymer
Highly Cationic Drainage Aids

Before
Well-beaten fiber

After
High-cat. additive

Fibrillation
Dispersed fines
Fibrils collapsed to surface
Bound fines

Patch Mechanism Schematic

M. Hubbe

M. Hubbe
Further Evidence of Patch Mechanism

Floccs form again with ~ same strength.

A. Fibrils

Pores

Fiber Surface

B. After cationic polymer addition

Pores

Fiber Surface

Classic Microparticle System

Colloidal anionic silica or bentonite

High-mass cationic PAM copolymer or cationic starch

Pressure screens

White-water

Thick-stock
Microparticle systems differ from traditional retention aids.

- They involve tiny, three-dimensional, negatively charged particles having strong interaction with cationic polymers.
- They may demand more careful control of dosages and charge balance.
- They can accelerate dewatering more, in addition to increasing retention.
Silanol group

Dissociated form

SiO₂ Surface

Freeness vs. SiO₂ & Cat. Starch

Carlson, Proc. 24th EUCERPA Conf., 1990, 161, adapted
Facts about Microparticle Systems

Tend to be most effective if excess charges are neutralized first

Require interaction between a microparticle and cationic polymer(s)

If all you need is retention, then scrutinize the operating costs carefully.

Machine Speed (m/min)

<table>
<thead>
<tr>
<th>Machine Speed (m/min)</th>
<th>First-Pass Retention (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td>80</td>
</tr>
<tr>
<td>Hi-Cat.+ Ret.Aid</td>
<td>85</td>
</tr>
<tr>
<td>Enzyme</td>
<td>90</td>
</tr>
<tr>
<td>Enzyme + Ret. Aid</td>
<td>95</td>
</tr>
<tr>
<td>All Three Additives</td>
<td>100</td>
</tr>
</tbody>
</table>

Why Entrained Air Can Slow the Paper Machine

Just like fines, the bubbles tend to “plug the drainage channels” in a wet web!

Solution: Defoamer additives, especially if they can be used in combination with deaeration equipment

Capital Investment Scenario

Suppose “PM1” is at the limit of its drying capacity, and that installation of a shoe press is expected to increase production by 4%.

“Apples & oranges” situation:

- The capital expense is incurred in year one.
- The revenue increases stretch into the future.
Ways to Judge whether an Investment is Worthwhile

Payback: How long will it take for the increased profits to pay for the investment?

Return on investment: What percentage rate of return will this project earn?

Net present value: Considering the time-value of money, how much is the whole project worth when the decision is made?

In summary…

Speeding up usually pays, if you can do so without hurting your cost situation.

Check whether speed is limited by the dewatering rate.

But don’t pay so much for dewatering aids that the variable costs approach the selling price!
Process Additives

“Used to make the machine run better”

Examples

- Retention aids
- Biocides
- Defoamers
- Deposit control aids

Yes, we need ‘em, but let’s find a way to reduce the cost of the benefits they provide…

Approaches to be Considered

- “Zero-cost” strategies: Changing how things are added, diluted, mixed
- Process control: Reducing variability and avoiding need (temptation) to overdose
- Pretreatments: Using one additive to promote the effect of another
Addition Point Locations

- Optimize contact times
- Maximize mixing
- Separate cationic & anionic additives (all separately is best)
- Take advantage of shear

Efficient Preparation and Feeding of Additives

- Avoid waste resulting from preparation.
- Calibration: Make sure you know how much is being added.
- Dilution: An easy way to achieve better mixing, more effective use of additives
- Filtering: “At least do no harm” when you add chemical additives.
Chemical Feed Calibration

![Diagram of chemical feed system with valve, graduated cylinder, and pump connected to feed point]

Why Dilute after Metering? *

- Metering pumps can be small.
- Amount of additive delivered, not its concentration, is more critical.
- Promptly deliver metered amount to the process, avoiding process control delay.
- Remember: Diluted additive mixes better with the stock due to lower viscosity and higher flow.

Often dilute just before point of addition, to minimize contact time with white water.
Online Process Control

Step 1: There must be a strong, reliable relationship between the controlled variable and the monitored variable!

Example: Retention aid “bump” test:

On-Line Tray Solids Measurements

On-line Control of Tray Solids

White Water Solids (%)

Time (days)

Start of on-line control

Ruetz et al., Wochenblatt Pap. 126 (3): 88 (1998), adapted

Same retention can give different tray solids & PM cleanliness.

\[
FPR_1 = 100\% \times \frac{(0.6 - 0.2)}{0.6} = 66.7\%
\]

\[
FPR_2 = 100\% \times \frac{(0.9 - 0.3)}{0.9} = 66.7\%
\]

But PM1 is “cleaner” than PM2!
Artama et al., in *Use of Minerals in Papermaking*, 1997, adap.

The Good News

- Controlled, constant white water solids should yield steadier operation, less variability of the product.

- Because danger of “underdose” is removed by monitoring, operators have confidence to reduce average chemical feeds, saving money.
Summary, Using Process Additives Efficiently

- Take advantages of synergies and avoid interferences (especially, adding substances that neutralize each other at the same addition point).

- Implement online control, if there is a strong cause-effect relationship shown.

- Dilute, mix well (but not excessively), calibrate, and choose addition points with care.

Relative Costs of Water Removal

Energy Uses during Papermaking

- Evaporative drying
- Vacuum pumping
- Forming section drives
 - Overcoming vacuum-induced friction
- Heating of process water

*This is not a complete list!
More subjects are covered in the textbook:

- Solids losses vs. retention aid costs
- Downtime avoidance costs
- Retention aid efficiency
- Reduction in furnish costs

- Extensive bibliographic references
- Time to work on case studies in groups
- Many more examples and grade issues

We appreciate your attention!

And thank you to TAPPI for making this event happen!

For follow-up questions:

hubbe@ncsu.edu
kasyking@att.net