

LAB TO PILOT UPSCALING OF NOVEL BIO-BASED AND BIO-DEGRADABLE BARRIER COATINGS FOR PACKAGING

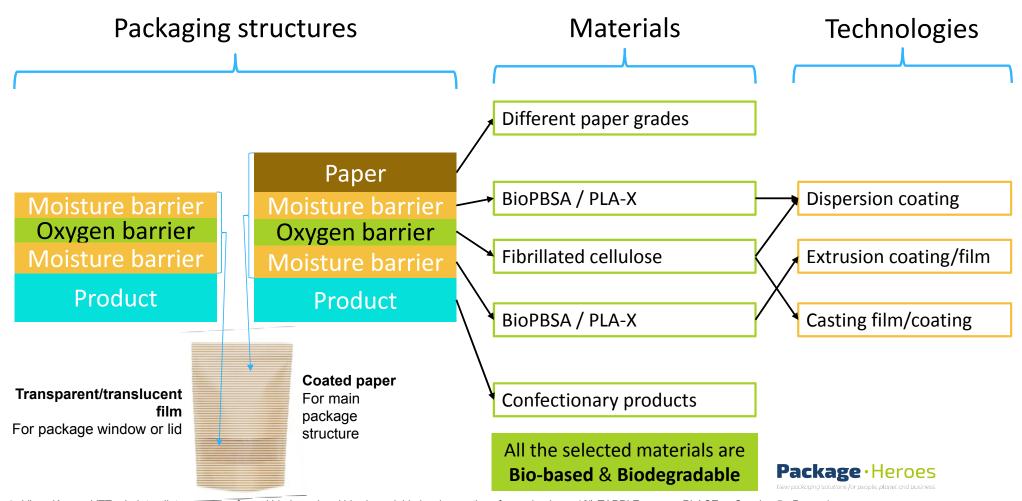
Presented by:
VINAY KUMAR
VTT Technical Research Centre of Finland

The work was done in Package-Heroes project funded by the Strategic Research Council of the Academy of Finland (grant numbers 320215 and 346596)

Our target food product groups for new packaging

solutions

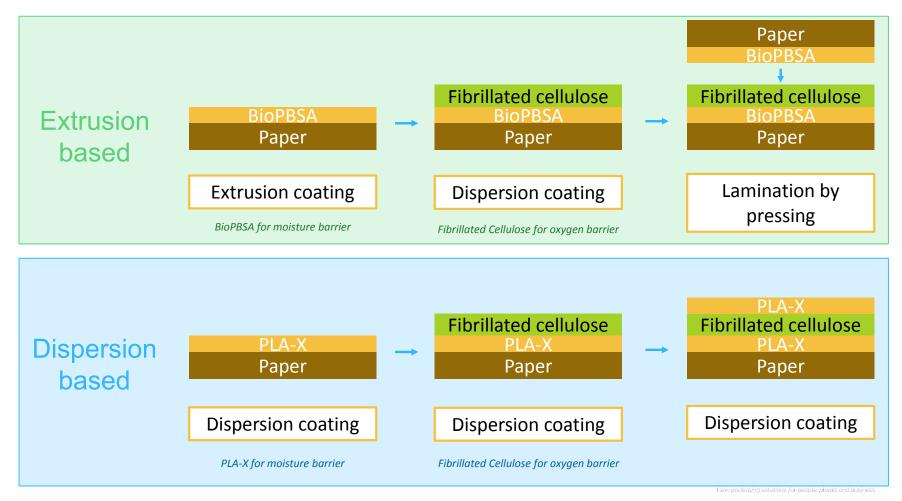
	Typical requirements	
	Thickness (μm)	70-100
	Grammage (g/m²)	70-100
	WVTR (g/m²/day) (38°C, 90% RH)	<5
	OTR (cc/m²/day) (23°C, 50% RH)	<2
o	Sealing temperature (°C) (1 s, 5 bar)	110- 140


Materials used for film production and coating

- Unbleached kraft paper (90 g/m²) as base substrate
- Bio-Poly(butylene succinate-co-adipate) Bio-PBSA as extrusion film and coating material to provide moisture barrier
- PLA-X as dispersion coating material for moisture barrier
- Fibrillated cellulose as coating material for oxygen barrier
 - Produced using mechanical treatment
- Carboxymethyl cellulose (CMC) as rheology modifier

Development plan for the new packaging solutions

⁴ Vinay Kumar, VTT - Lab to pilot upscaling of novel bio-based and bio-degradable barrier coatings for packaging - 18th TAPPI European PLACE - Session 5 - Paper 1


Lab studies

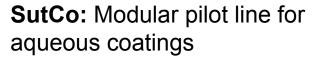
Production of multilayer structures in lab

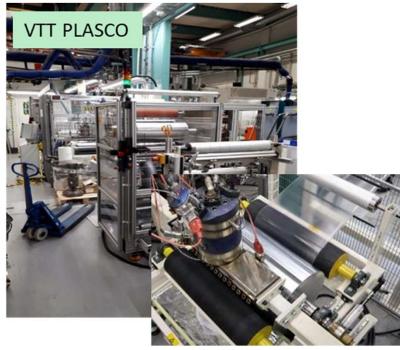
Barrier characterization results

(all tests done at 23°C and 50% RH)

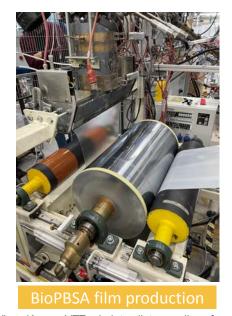
⁷ Vinay Kumar, VTT - Lab to pilot upscaling of novel bio-based and bio-degradable barrier coatings for packaging - 18th TAPPI European PLACE - Session 5 - Paper 1

Piloting





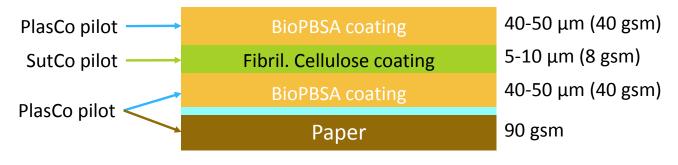
Pilot lines used for production of bio-based packaging structures


PlasCo: Pilot line for cast film and extrusion coating



Pilot production of Extrusion based Structure (1)

PlasCo pilot BioPBSA coating $40\text{-}50 \,\mu\text{m} \,(40 \,\text{gsm})$ SutCo pilot Fibril. Cellulose coating $5\text{-}10 \,\mu\text{m} \,(8 \,\text{gsm})$ PlasCo pilot BioPBSA film $40\text{-}50 \,\mu\text{m} \,(40 \,\text{gsm})$



Application of Fibril. Cellulose coating

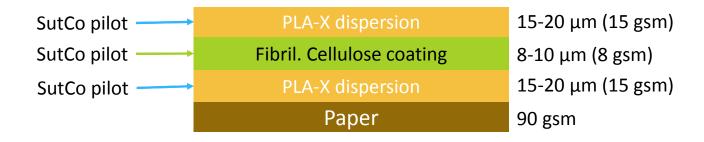
BioPBSA extrusion coating

Pilot production of Extrusion based Structure (2)



Epotal

primer


2 gsm

Application of BioPBSA extrusion coating on top of fibrillated cellulose coating

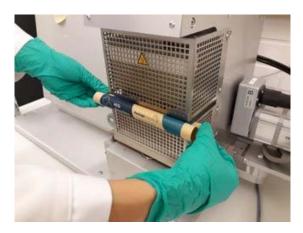
11 Vinay Kumar, VTT - Lab to pilot upscaling of novel bio-based and bio-degradable barrier coatings for packaging - 18th TAPPI European PLACE - Session 5 - Paper 1

Pilot production of Dispersion based Structure

12 Vinay Kumar, VTT - Lab to pilot upscaling of novel bio-based and bio-degradable barrier coatings for packaging - 18th TAPPI European PLACE - Session 5 - Paper 1

Barrier characterization results

(all tests done at 23°C and 50% RH)

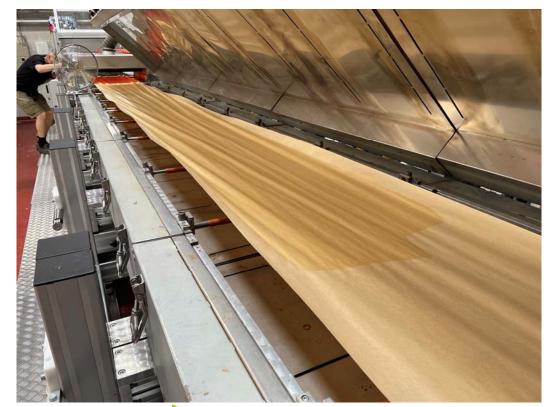


13 Vinay Kumar, VTT - Lab to pilot upscaling of novel bio-based and bio-degradable barrier coatings for packaging - 18th TAPPI European PLACE - Session 5 - Paper 1

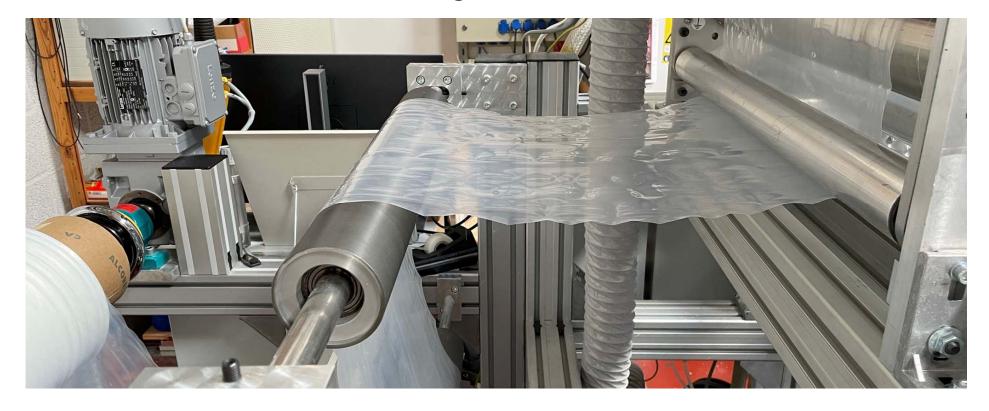
Packing and sealing of demo packages (Extrusion Structure

2) Sealing conditions: Temperature: 90°C, Pressure: 3.5 bar, Time: 2 s

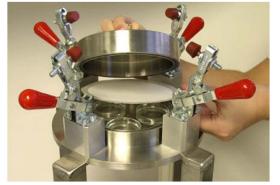
Challenges in coating pilot trials



When applying fibrillated cellulose directly onto the paper substrate


- Lots of water goes into the paper substrate
- Drying stresses of coating structure overpower the machine tension and cause wrinkling of the web

Thermal expansion of PBSA film during drying of fibrillated cellulose coating


Does fibrillated cellulose coating provide aroma barrier?

- We are not sure!
- Testing is challenging due to the amount and diversity of the aromas in actual products
 - The major component alone does not represent the whole aroma

The challenge is to choose a representative compound or blend at proper concentration

Gravimetric, KCL Desiccator and KCL Permeation cell methods for Aroma barrier determination

Summary and conclusions

- We were able to demonstrate the upscaling of new bio-based and biodegradable packaging material solutions from lab to pilot
 - The pilot produced multilayer structures were converted to demo packages for chocolates and cookies
 - Shelf-life test results from the demo packages (extrusion coated structures) were very encouraging
 - We need to re-visit piloting of the dispersion structure due to poor oxygen barrier
- The upscaling of production from lab to pilot is not so straightforward with the new materials
 - Material performance may be affected by the dynamic processing conditions of pilot
- It is indeed possible to work with the new materials on a larger scale
 - Material and process optimization is required

Thank You Questions? Or other remarks

Presented by:

Vinay Kumar VTT Technical Research Centre of Finland Vinay.kumar@vtt.fi

The work was done in Package-Heroes project funded by the Strategic Research Council of the Academy of Finland (grant numbers 320215 and 346596).

